Advanced Computer Architecture

Part I: General Purpose
Exploiting ILP Statically

Paolo.Ienne@epfl.ch
EPFL — I&C - LAP

ECOHLE POLY TECHMIQUE
FEDERALE DE LAUSANKE

mailto:Paolo.Ienne@epfl.ch

VLIW and EPIC? Another Way to ILP

(What if | Now Threw It All Away?!...)

ECOHLE POLY TECHMIQUE
FEDERALE DE LAUSANKE

lap

Very Long Instruction Word:

An Alternate Way of Extracting ILP
e

VLIW

l Pipelining l Cycles

Instructions

1 1
Standard

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

ECCLE POLYTECHNIQUE 3
FEDERALE DE LAUSANNE

Sequential - Pipelined - Multiple Issue

ideal CPI = n

time

L O

NLE_NE

time
ideal CPI = 1
(P . . m
ECOLE POLVIECHNIQUE 4 AdvCompArch — Exploiting ILP Statically © lenne 2006-22

3 Requirements to Obtain CPI < 1
S EEEEE—

1. Machine parallelism

The machine is equipped with multiple datapaths
(pipelines)

2. Application parallelism

The application program has inherent parallelism
that can be exploited

3. Compiler “cleverness”

The compiler needs to discover the application
parallelism and expose it to the machine

ECOHLE POLYTECHNIQUE 5
FEDERALE DE LAUSANNE

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

(Dynamically Scheduled)
Superscalar Processor

Register Files : Load/Store|| Branch
ALU 1 ALU 2 FP Unit i Unit
t t
t t
Dynamic _
Scheduling: Dynamic Scheduler \

What each unit

il \

does in each cycle 1234: |
is decided at 1235: : Reservation Stations,
execution time in 1236: N Scoreboard, etc.
hardware 1237: AN
1238: 32-64 bits
Instruction Memory

B

L
© lenne 2006-22 m

AdvCompArch — Exploiting ILP Statically

Run Time vs. Compiler Time

Scheduling
_—

JWhat does it mean to schedule?
“» It means to decide WHEN and WHERE each
instruction is executed
dScheduling happens at run time in superscalars
and it happens exclusively at compile time in
VLIWS

dRun time scheduling in superscalars requires
considerable resources in the processor hardware
“*Reservation stations and reorder buffer

“»*Renaming registers and various sorts of mapping
tables

\/
2 Etc.
ECOHLE POLYTECHNIQUE 7
FEDERALE DE LAUSANNE

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Dynamic Scheduler
e

dLarge amount of logic, significant area cost

“»PowerPC 750 Instruction Sequencer is approx. 70%
of the area all execution units! (Integer units + Load/
Store units + FP unit)

dCycle time limited by scheduling logic
dDesign verification extremely complex

J Design-for-Testability (DFT) complex
“*Very complex irregular logic

ECCLE POLYTECHNIQUE 8
FEDERALE DE LAUSANNE

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Dynamic Scheduler
e

 Scheduling complexity (e.g., checking dependences)
is typically of the order of the square in the issue rate

(R)
In-flight Instructions (kR)
x | VIV IV IV IV IXx | VIV IV IV YV
v I VIV I VIV IV IV IV IV IV |V |V
Fetched AR A AR AR AN A A A Ans
Instructions % ‘/ ‘/ % ‘/ ‘/ % ‘/ ‘/ % ‘/ %
To Execute
(R) v I VIV I VIV I Iix | YV|IVIV IV |V |V
v | I x|\ vV I VI VIV IV IV IV IV |V |V
=» Strong limit to ILP exploitation
)
&QJ}& 9 AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

(Statically Scheduled) Very Long

Instruction Word Processor
-]

Register Files ALU 1 ALU 2 EP Unit Load/Store Branph
Unit Unit
Static
Scheduling:

What each unit
does in each cycle
is decided at

compile time in |
software Instruction Memory 128-512 bits

L (i
feoue rouEanove 10

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

How to exploit Instruction Level

Parallelism
e EE— ey
dSuperscalar Processor
“+*Hardware detects parallelism among instructions

“+Scheduling is first performed at compile time, but
with very loose information on the architecture the
program will be run on

< Final scheduling is performed at run time

QAVLIW (or EPIC) Processor

“»Software detects parallelism among instructions
<+ Scheduling is performed at compile time

ECCLE POLYTECHNIQUE 11
FEDERALE DE LAUSANNE

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Traditional Code vs. VLIW Code

Traditiona VLIW
1000:; op1 1000:; op1 op 6 op 7/ NOP
1001:] op 2 1001:; NOP NOP op 3 op 4
1002:) op 3 1002:; NOP op 2 NOP NOP
1003:] op 4 1003:; NOP op 5 op 12 NOP
1004:;; op5 1004:; NOP NOP NOP op 17
1005:;; op 6 1005:;; NOP NOP op 8 op 16
cycles != instructions cycles = instructions
latency-independent latency-dependent

semantics semantics

(Unit-Assumed Latency) (Non Unit-Assumed Latency)
)
H(l f{&& 12 AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

VLIW Main Advantage:
Low Hardware Complexity

JArea Advantage: No need for the

hardware used in superscalars for dynamic

dependence analysis > more execution
units

JTiming Advantage: No need for

complex dependence analysis every cycle
- clock frequency can be higher

ECCLE POLYTECHNIQUE 1 3
FEDERALE DE LAUSANNE

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

A Different Split between Software

and Hardware
I EEEEEII———————.

Program

l

Front-End
Optimisation
Superscalar

| l

Dependency Dependency
Compiler Analysis Analysis Processor
(software, (hardware,
static) l l dynamic)
Resource Resource
Allocation Allocation
(Scheduling) (Scheduling)
, VLIW/EPIC 1
v
Execution
P N . m
feoue roLviiamioue 44 AdvCompArch — Exploiting ILP Statically © lenne 2006-22

A Different Split between Software

and Hardware
I EEEEEII———————.

||
Loop: 1d $£0, (Sml)
addd $f4, $f $f2
i: ;zzl)’w%f Loop: 1d $£0, ($rl)
' 1d $£6, (Srl)
::dd i:ii—z)f:lsigz 1d $£10, (Srl) addd $£4, $£0, S£2
S o, e e aa
addd $f4, $£f0, $f2 addd $f12 $£10, $f2 ! ! !
sd ($r1) s£4 sd ($r1- 16! $£12 sd ($rl), S$f4 addd $fle, $f14, $f2
subi sr1 érl 8 1d $£14, (W1-24) sd ($r1-8), S$f8 addd $£20, $f18, $f2
bnez $rl, Loop addd $fl6, $flL4, $f2 sd ($rl-16), $£f12
sd ($r1-24), S$£16 sd ($r1-24), $fl6

sd ($r1-32), $£20
subi rl, Srl, 40

1d $f18, (%1—32)
bnez $rl, Loop

addd $£f20, s™ig, sf2
sd ($r1-32M, $£20
subi rl, Srjg 40
bnez $rl, Los:

SW HW

(= Complier) (= Instruction Scheduler)

VLIW

Run-time information available
(actual data, addresses, pointers, etc.)

Source code available
(higher level information)
Global analysis possible
(variable lifecycle, etc.)

il

®
fcoLe roLyTEcuIouE 1.5 AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

FEDERALE DE LAUSANNE

Challenges of VLIW

S EEE— s
d Compiler Technology
Compiler now responsible for scheduling
Most severe limitation until recently (VLIW idea is
around since the 70s!)
- Binary Incompatibility

% Consequence of the larger exposure of the

microarchitecture (= implementation choices) in the
architecture (e.g., NUAL semantics)

 Code Bloating

\/
0‘0
\/
0‘0

% All those NOPs occupy memory space and thus cost
*»» But there are also other reasons!...
)
&QJ}& 16 AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

The Code Bloating Problem

(Memory Is Not That Cheap—and More...)

lap

ECOHLE POLY TECHMIQUE
FEDERALE DE LAUSANKE

La

rger Code Is a Serious Problem

ECCLE POLYTECHNIQUE 1
FEDERALE DE LAUSANNE

1000:; op1 op 6 op 7/ NOP
1001:; NOP NOP op 3 op 4
1002:] NOP op 2 NOP NOP
1003:;] NOP op 5 op 12 NOP
1004:; NOP NOP NOP op 17
1005:; NOP NOP op 8 op 16

In a first approximation, the problem is due to the
explicit NOPs

Not just a DRAM cost issue (main memory is cheap...),
but has weird impacts on cache performance (size, cache
pollution, associativity, etc.)

L
8 AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Code Compression: Differentiate
Fetch Packet and Execute Packet

t t t t

nop addi nop nop
Uncompressed load nop add> muld
Execute Packets store sub nop nop
for the processor
(classic VLIW code) I Egg Egg ?1%%3 Rgg
: : crossbar : :
Ferressed [1[B] add; [0JA[load |0[C| add, [1]D] muld
memory [0[A[store [1]B] sub [1[C[adds [1]A] nop |

Separator \

A (1 = last instruction of a VLIW) Execution Unit m
e 19 © lenne 2006-22

AdvCompArch — Exploiting ILP Statically

Typical VLIW Code Compression
S EEE— s
dInstructions are encoded in a less
straightforward way
“»Separator bit = 0: next operation is in parallel
% Separator bit = 1: next operation is sequential
< Unit number: specifies where to execute operation

1 Price to pay for shorter code:
* Fetch/Decode logic more complex

»Crossbar for shipping operations to the right FU,
complexity proportional to n?

Hardware was supposed to be trivial and O(n)...

ECCLE POLYTECHNIQUE 20
FEDERALE DE LAUSANNE

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Code Bloating Solved?

A trivial but significant reason for bloating
IS removed

JIMore fundamental and difficult to
overcome reasons exist which still
increase significantly the code size

1See later...

ECCLE POLYTECHNIQUE 21
FEDERALE DE LAUSANNE

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

The Binary Compatibility Problem

(Not everybody likes—or can—recompile...)

lap

ECOHLE POLY TECHMIQUE
FEDERALE DE LAUSANKE

NUAL Semantics Assumes More...

1000:
1001:
1002:
1003:
1004:
1005:

op1l op 6 op 7/ NOP
NOP \ NOP op 3 op 4
NOP op 2 NOP NOP
NOP op 5 op 12 NOP
NOP NOP NOP op 17
NOP NOP op 8 op 16

More information is now implicit in the code:

Instruction latencies—used to enforce correct handling of data
dependencies

Available hardware parallelism—units scheduled on each cycle

ECCLE POLYTECHNIQUE 23
FEDERALE DE LAUSANNE

1.

2.

AdvCompArch — Exploiting ILP Statically

cycles = instructions

latency-dependent
semantics

(Non Unit-Assumed Latency)

L
© lenne 2006-22 m

VLIW Binary Is Incompatible with
More Aggressive Implementations

--

: Load/Store[[Branch 7%
AL A2] PP | ot new: .
i A |
l] | | E :
i t - OO
Dynamic Scheduler
| |
| | <4 Traditional Code
ALUL || A2 Load/>tore ALU3 FPUnit2 |

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 24

\ VLIW Code

AdvCompArch — Exploiting ILP Statically

L
© lenne 2006-22 m

VLIW Binary Incompatibility
e

dMore subtle sources of incompatibility

“*Changes in instruction latencies—e.g., load
latencies increases (logic-memory gap)

No fully satisfactory solution exists today

_IPartial or research solutions:

“»*Recompile (possible in some kind of
systems—not for consumer PC market...)

“*Special VLIW coding/restrictions

“*Dynamic Binary Translation is emerging—see
future course

ECCLE POLYTECHNIQUE 25
FEDERALE DE LAUSANNE

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Problem #1

Latency Cannot Increase
e

1000:; op1 op 6 op 7/ NOP

1001/ NOP "“1 NOP op 3 op 4 cycles = instructions
1002:; NOP op 2 NOP NOP latency-dependent
1003:) NOP op 5 op 12 NOP semantics
1004: NOP NOP NOP op 17 (Non Unit-Assumed Latency)
1005: NOP NOP op 8 op 16

Trivially, higher latency may violate data dependencies

- E.g., the operands of “op 2" are no longer available if the
latency of “op 1" increases.

ECCLE POLYTECHNIQUE 26
FEDERALE DE LAUSANNE

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Why Latency Could Ever Increase?
e

Previous Next
gen. gen.
| LOAD | [LOAD[
Y load R2, (RS) _ADD | [ADD
1 add R3,R3,R2
1 cycle, 1 cycle,
load: 1 cycle = 2 cycles 25 ns 15 ns

JLatency can sometimes increase in next
generation machines:

“E.g. memory / logic growing gap

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 27

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Problem #2

Latency Cannot Decrease Either!
e EE— ey

a=b/3;

bE‘a ey e=e+f | a=b/3
= : =
e=e+ f: Z__e::
c=e+4; =C WB
d>C X 2, b=a+2

If division takes 3 cycles, and addition takes 1 cycle...

Values ¢ and a can be assigned to the same physical
register in this schedule (a is dead while c is alive)

If, in the next generation, division takes
only 2 cycles = wrong result!

ECOLE POLY TECHMIOL
FEDERALE DE LAUSANN..

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

The Compiler Problem

(Not Just a New Compiler...)

ECOHLE POLY TECHMIQUE
FEDERALE DE LAUSANKE

lap

Typical Code May Have Limited ILP

- Example:
Loop: 1d $£0, (Srl) // read array elem.
addd $Sf4, $£f0, S$f2 // add constant
sd ($rl), $f4 // write array elem.
subi $rl, $rl, 8 // next element

bnez $rl, Loop

- Schedule on a VLIW processor
% Slot 1: Load/Store Unit or Branch Unit
< Slot 2: ALU
% Slot 3: Floating-Point Unit

- Latencies:
% Load/Store > 2 cycles
% Integer - 2 cycles
% Branch - 2 cycles
% Floating Point - 3 cycles

Gl

L
30 AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Typical Code May Have Limited ILP
e

1 Scheduled VLIW code:

Load/Store/Branch Unit ALU Floating-Point Unit

1d $f0, (S$rl) nop nop Cycle 1
nop nop nop Cycle 2
nop nop addd $f4, S$f0, $f2 Cycle 3
nop nop nop Cycle 4
nop nop Cycle 5
sd ($rl) , Sf4 jubi $rl, $rl, 8 nop Cycle 6
nop / nop nop Cycle 7
bnez $rl, Loop nop nop Cycle 8
nop nop nop Cycle 9

] Execution time for $r1 = 80:

il

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE

% 80 / 8 = 10 iterations; 9 cycles per iteration > 90 cycles

31

AdvCompArch — Exploiting ILP Statically

L
© lenne 2006-22 m

Fighting Dependencies

 Parallel execution is limited by the need to find
independent instructions

JWe need to deal with both data and control
dependencies

1 Data:
a=b+c; ?
d=a+d;

1 Control:
if (a==b)
d=c+d;

exit
v

ECCLE POLYTECHNIQUE 32
FEDERALE DE LAUSANNE

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Overcoming Control Dependencies:
Predicated Execution

AIf

“*We have abundant resources (machine
parallelism), and

“*We do not care about power dissipation, etc.
but just look for performance

JWe can execute all paths in parallel

without making a choice e gy

¢—I

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 33

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Predicated Execution
I EEEEEII———————.

JRemove branches via If Conversion:
if (@a==b) c=2*d else c=3*d
becomes
P1 = (a==b)
(P1) c=2*d ('P1) c=3*d
JIntroduce predicate P1 (outcome of jump)

_Instructions can now be all executed in
parallel, but they are committed only if the
relative predicate is true

mne.

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Predicated Execution Needs
Architectural Support

1 .
B e We need:
P1 =1 IP1
! } 1. An instruction (==) to

set the predicate
Predicate registers

3. An additional field in the
| | instruction word

4. A way to check and
delay exceptions

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 35

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Predicated Execution Makes Basic
Blocks Larger

e] — |

]

I
‘

L
AdvCompArch — Exploiting ILP Statically lenne 2006-22 m

Predication Support

Can Be Partial or Full
I EEEEEII———————.

JFull: all instructions can be executed
conditionally
“*ARM (on the flags)
“IA-64/Itanium (on predicate registers)
JPartial: typically a single conditional
Instruction
“+STMicroelectronics ST2xx: Select instruction
“+Alpha: Conditional Move instruction

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 37

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Predication

without Architectural Support...
e EE— ey

1 Before...

/* an excerpt from g72x.c */
/* g72lencoder, mediabench */

anmant = (anmag == 0) ? 32:
(anexp >= 0) ? anmag >> anexp: anmag << -anexp;

1 After...

/* an excerpt from predicated g72x.c */
/* g72lencoder, mediabench */

p2 = -(anmag == 0); p3 = -(anexp >= 0);

anmant = (32 & p2) | ((anmag >> anexp) & ~p2 & p3) |
((anmag << -anexp) & ~p2 & ~p3);

() l-

L
fcoLe roLyrEcuvioue 38 AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

FEDERALE DE LALTS:

Predication

without Architectural Support...

 Suppose that
% Branches are very poorly predictable (p = 0.5)
% Branches costs 1 or 5 cycles (taken/untaken)
% Tests and other ALU ops cost 1 cycle
% There are several ALUs available (e.qg., 3)
 Trace of normal program is
% Test - Branch = (Move || Test - Branch = Shift)
< Onaverage 1 + (1+5)/2 + V2 + (1 + (145)/2 + 1)/2 = ~7 cycles
 Trace of modified program is
% 2 Tests > 2 Negs = 2 Nots - 2 Shifts, 5 Ands, 3 Ors
% Ideally some 16/3 = ~5-6 cycles
[Predication could in special cases be also a programming frick
for normal processors not supporting it in hardware!...

L)

L0

L0

4

il

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Overcoming Control Dependencies:

Loop Transformations
S EEE— s

JLoops are often the most important part
of code (in terms of fraction of total time)

JLoops bodies can be transformed so that
more parallelism can be exploited

“*»Loop peeling

_oop fusion

_oop distribution

_oop unrolling
“*Software pipelining, etc.

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 40

0

®
0‘0

N/
0‘0

4

.
*

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Loop Peeling

100 times

for (i=0;i<102;i++)
ali]=ali-1]+c;

]

for (i=0;i<100;i++)
ali]=ali-1]+c;
a[100]=a[99]+c;

Used with fusion (next slide) a[101]=a[100]+c;
to increase ILP

M =

102 times

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Loop Fusion

e 00 for (i=0;i<102;i++)

b[i]=Dbli-2]+c;
for (j=0;j<100;j++)
a[j]=alj]*2;

= |~

]

for (i=0;i<100;i++) {
b[i]=bl[i-2]+c;
ali]=ali]*2;}

a[100]=a[100]*2;

a[101]=a[101]*2;

parallel .
AdvCompArch — Exploiting ILP Statically © lenne 2006-22

100

102 100

Now a and b can be computed in

Loop Distribution

100

Now the second loop can be

100 for (i=0;i<100;i++) {
b[i]=Db[i-1]+c;
ali]=bli]+2;}

]

for (i=0;i<100;i++)
100 b[i]=b[i-1]+¢;
for (i=0;i<100;i++)

unrolled and parallelised ali]=b[i]+2;

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Creating Larger Loop Bodies:
Loop Unrolling

for (i=0;i<100;i++)
ali]=ali]+c;

s

for (i=0;i<100;i=i+4) {
ali]=a[i]+c;
ali+1]=ali+1]+c;
ali+2]=ali+2]+c;
a[i+3]=al[i+3]+cC;}

=)

I++

1I=1+4

4 times less jumps and more
scope for ILP (larger basic block)

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Example of Loop Unrolling
e EE— ey

- Example:
Loop: 1d $£0, (Srl) // read array elem.
addd $Sf4, $£f0, S$f2 // add constant
sd ($rl), $f4 // write array elem.
subi $rl, $rl, 8 // next element

bnez $rl, Loop

- Schedule on a VLIW processor
% Slot 1: Load/Store Unit or Branch Unit
< Slot 2: ALU
% Slot 3: Floating-Point Unit

- Latencies:
% Load/Store > 2 cycles
% Integer - 2 cycles
% Branch - 2 cycles
% Floating Point - 3 cycles

Gl

L
45 AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Before Unrolling

(1 Scheduled VLIW code:

Load/Store/Branch Unit ALU Floating-Point Unit

1d $f0, (S$rl) nop nop Cycle 1
nop nop nop Cycle 2
nop nop addd $f4, S$f0, $f2 Cycle 3
nop nop nop Cycle 4
nop nop Cycle 5
sd ($rl) f4 ubi $rl, $rl, 8 nop Cycle 6
nop Vﬁop nop Cycle 7
bnez $rl, Loop nop nop Cycle 8
nop nop nop Cycle 9

] Execution time for $r1 = 80:

il

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE

% 80 / 8 = 10 iterations; 9 cycles per iteration > 90 cycles

46

AdvCompArch — Exploiting ILP Statically

L
© lenne 2006-22 m

Loop Unrolling Idea

Loop: 1d S$fO0,
addd $f4,
sd ($Srl), Sf4
subi $rl,

bnez $rl, Loop

e Replicate body
e Update references
e Rename registers

e etc.

il

ECOLE POLYTECHNIQUE 47
FEDERALE DE LAUSANNE

AdvCompArch — Exploiting ILP Statically

1d
addd
sd

1d
addd

1d
addd
sd

1d
addd
sd

1d
addd

subi
bnez

$£0, (Srl)
$f4, $£0, $f2

(Srl) , $£f4

$£6, -8(Srl)
$f8, $f6, $f2
-8($rl), $£8

$£10, -16(Srl)
$f12, $£f10, $f2
-16($rl), $£f12

$£14, -24($rl)
$fl6, S$fl4, Sf£2
~24 ($rl), $f16

$£18, -32($rl)
$f20, $f18, $f2
-32($rl), $£20

$rl, $rl, 40
$rl, Loop

© lenne 2006-22

lap)

Unrolled and Rescheduled
I EEEEEII———————.

Load/Store/Branch Unit ALU Floating-Point Unit

1d $f0, (S$rl) nop nop Cycle 1
1d $f6, -8($rl) nop Cycle 2
1d $£10, -16(Srl) addd $f4, $f0, $f2 Cycle 3
1d $£f14, -24($rl) nop addd $£f8, $f6, $f2 Cycle 4
1d $£18, -32($rl) addd $f12, $£f10, S$f2 Cycle 5
sd ($rl), Sf4 nop addd $f16, $f14, $f2 Cycle 6
sd -8($rl), $f8 nop addd $£20, $£f18, S$f2 Cycle 7
sd -16(S$rl), $f12 nop nop Cycle 8
sd -24 ($rl), s$fle nop nop Cycle 9
sd -32($rl), $£f20 ubi rl, Srl1l, 40 nop Cycle 10
nop Vlop nop Cycle 11
bnez $rl, Loop nop nop Cycle 12
nop nop nop Cycle 13

- Now 80 / (5*8) = 2 iterations; 13 cycles per iteration >
(| 26 cycles (vs. 90 cycles, more than 3x faster!) m
© lenne 2006-22

ECOLE POLYTECHNIQUE 4 8 AdvCompArch — Exploiting ILP Statically

FEDERALE DE LAUSANNE

No Architectural Extension

Required (So Far...)
e

dSome techniques seen here require architectural
extensions
* Predication
“*Branch prediction

\/
0‘0

1 0Others do not

*Basic loop transformations (peeling, fusion,...)
“*Loop unrolling

\/
0‘0

dYet, they may have an indirect impact on
architectural needs—e.g., more registers

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 49

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

VLIW Code Bloating Revisited...

 VLIW code fundamentally larger than standard code: not only NOPs
are explicit, but aggressive unrolling multiplies real instructions

d Compare last example: 39 words vs. 5! more than 50% are NOPs!

1d $£f0, (Srl) nop nop

1d $f6, -8(S$rl) nop nop

1d $£10, -16($rl) nop addd $f4, $£0, $f2

1d $£f14, -24($rl) nop addd $£8, $f6, $f2
1d $£f0, ($rl) 1d $f18, -32($rl) nop addd $£f12, $£10, $f£2
addd $f4, $£f0, $f£2 sd ($rl) , $f4 nop addd $f16, $f14, $f£2
sd ($rl), $£4 sd -8($rl), $f£8 nop addd $£20, $£18, $f2
subi $rl, $rl, 8 sd -16($rl), $f12 nop nop
bnez $rl, Loop sd -24($rl), $fi6 nop nop

sd -32($rl), $£20 subi $rl, $rl, 40 nop

nop nop nop

bnez $rl, Loop nop nop

nop nop nop

il

L
ECOLE POLVTECHNIQUE §(] AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

FEDERALE DE LAUSANNE

Beyond Loop Unrolling:

Software Pipelining
e

JRestructure the body of the loop so that
more parallelism can be extracted

1Put different tasks from different iterations
in the same iteration (to exploit ILP)

BUT: Do not increase code size
(as loop unrolling does)

ECCLE POLYTECHNIQUE 51
FEDERALE DE LAUSANNE

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Software Pipelining

JConsider the following simple C code snippet:

for (i=0, i<7, i++) { load ali]
c[i] = a[i]l+1; add a[i], #1
} store c[i]

dThe three corresponding instructions are
dependent, they cannot be executed in parallel

JGoal: restructure the loop, so that some ILP
can be exploited

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Software Pipelining Idea

iterat. 1

original loop

iterat. 1

new loop
L L

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Software Pipelining
Prologue, Body, and Epilogue

. PROLOGUE
terat, oad al original loo
add a[1], #1 g p
load a[2] [
store c[i]
add a[i+1], #1
load a[i+2]
new loop

EPILOGUE
store c[6]

add a[7], #1 - _‘

store c[7]
MCPr (-
fcoLe roLyrEcuioue 54 AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

SW Pipelining Example
e EE— ey
J Same example:

Loop: 1d $£0, (Srl) // read array elem.
addd $Sf4, $£f0, S$f2 // add constant
sd ($rl), $f4 // write array elem.
subi $rl, $rl, 8 // next element

bnez $rl, Loop

- Schedule on a VLIW processor
% Slot 1 and 2: Load/Store Unit or Branch Unit
% Slot 3: ALU
% Slot 4: Floating-Point Unit

- Latencies:
% Load/Store > 2 cycles
% Integer - 2 cycles
% Branch - 2 cycles
% Floating Point - 3 cycles

Gl

L
95 AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Again, Unroll the Loop

Loop: 1d $£0, (Srl)
addd Sf4, Sf0, S$f2
sd ($rl), Sf4
Loop: 1d $£0, ($rl) 1d $£6, -8($rl)
addd $f4, $£f0, $f2 addd $£f8, $f6, $f2
sd ($rl), $f4 sd -8($rl), $Sf8
subi $rl, $rl, 8 L $£10, -16(Srl)
bnez $rl, Loop addd $f12, $f10, $f2
sd -16(S$rl), $f12
1d $f14, -24($rl)
addd $fl16, $f14, $f£2
e Replicate body sd -24($r1), $£16
e Update references 1d $£18, -32($rl)
e Rename registers addd $£20, $£18, $£2
sd -32($rl), $f20

e etcC.
subi $rl, $rl, 40

bnez $rl, Loop
P m

ECOLE POLYFECHNIGUE 56 AdvCompArch — Exploiting ILP Statically © lenne 2006-22

FEDERALE DE LAUSANNE

Unrolled Loop Schedule
S EEE— s

LOAD Unit STORE Unit ALU F'°atil'}|§’i'tp°i“t
LD #0 Cycle 1
LD #1 Cycle 2
LD #2 ADDD #0 Cycle 3
LD #3 ADDD #1 Cycle 4
LD #4 ADDD #2 Cycle 5
LD #5 SD #0 ADDD #3 Cycle 6
LD #6 SD #1 ADDD #4 Cycle 7
LD #7 SD #2 ADDD #5 Cycle 8
SD #3 ADDD #6 Cycle 9
SD #4 ADDD #7 Cycle 10
SD #5 Cycle 11
SD #6 Cycle 12
SD #7 Cycle 13

il

L
Fcout pOLYTEQUNIOUE 57 AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

FEDERALE DE LAUSANNE

Identify the Regular Kernel

LOAD /Branch Unit

STORE Unit

ALU

Floating-Point Unit

1d $£0, (S$rl)

1d $f6, -8($rl)

1d $£f0, -16($rl) addd $f4,$£f0,$f2
1d $f6, -24(srl) addd $£8,$f6,$£2
1d $£f0, -32(s$rl) addd $£12,$f0,$£2
1d $£f6, -40($rl) sd 0($rl), s$f4 addd $f£4,$£f10,$£f2
1d $£10, -48($rl) | sd -8($rl), $f8 addd $£8,$f14,$£f2
1d $£f14, -56($rl) [sd -16($rl), $£f12 | subi $rl,$rl,24 | addd $£f12,$£f6,$£2
bnez $rl, Loop

sd 0($rl), $f4 addd $£f4,$£f10,$£2

sd -8($rl), $Sf8 addd $£8,$f14,$£2

sd -16($rl), $£f12

sd -24($rl), $f4

sd -32($rl), $£8

(P

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 58

AdvCompArch — Exploiting ILP Statically

© lenne 2006-22

Modified SW Pipelining Example

(All Unit Latencies)
e

LOAD /Branch Unit STORE Unit ALU Floating-Point Unit
(latency ONE) (latency ONE) (latency ONE) (latency ONE)
1d $£0, (Srl)
1d $£0, -8($rl) addd $£f4,$f0,$£f2
1d $£0, -16(S$rl) sd 0($rl), $f4 subi $rl,$rl,8 |addd $£4,$£f0,$f2

bnez $rl, Loop

sd 0($rl), S$f4 addd $f4,$f0,$f2
sd -8($rl), $f4

il

L
EcOLE FOLITECKNIQUE 50 AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

FEDERALE DE LAUSANNE

Why “SW Pipelining”?

R

HW pipelining _HN SW pipelining
. Fetch (i+2) . Load (i+2)
I Decode (i+1) I Add (i+1)

Execute (i) Store (i)

Instructions Iterations

advancing in advancing in

parallel parallel

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 60

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Overcoming Nonloop Control

Dependences: Trace Scheduling

d Early technique: published by Fisher in 1981

[Optimise the most probable path by increasing the size of basic
blocks (= more chances to find ILP)

[Add compensation code in less probable paths
 Beyond basic blocks: region-based scheduling

95% / \ 5%

X=X+5

X=X+5

N

N

ECCLE POLYTECHNIQUE 61
FEDERALE DE LAUSANNE

This block is
now larger!

95% / \ 5%

AN

AdvCompArch — Exploiting ILP Statically

X=X-5

compensation
code

L
© lenne 2006-22 m

Register Renaming as a Way to
Compensate

11=f(...
95% 5% 959%) 5%
i=f(...)) i1=i
a=a(i — ol compensation
9(i) a=g(i1) pcode

 Register renaming ensures that semantics is correct in
every trace

- But, again, we need more registers...
etk

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Trace Scheduling

Most probable trace
will be optimised

1| |4 "
N
L# J,J p) \’7 9
— — r 3
i : N VAN | /Q

All possible (but less probable)
traces are there, plus some
compensation code

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 63

AdvCompArch — Exploiting ILP Statically © lenne 2006-22

What Is Trace Scheduling?
Static Speculation

By moving instructions across branches to
optimise probable path, we have done
speculation

dDynamic (run time) speculation is one of
the most significant ingredients of superscalar
performance

dTrace Scheduling is a form of static (compile

time) speculation, and so are superblocks,
hyperblocks,...

= Region-Based Scheduling
P
e 64

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Run Time vs. Compile Time

Speculation
S EEEEE—

At run time: it is the hw that does it

At compile time: the compiler schedules
the speculated instruction before the
branch = It is speculated with respect to
the original code, but in the resulting code
one cannot really see it as being
speculated

It is what happens in trace scheduling
and superblock scheduling

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 65

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Compile Time Speculation

J Register renaming to ensure that

correction code source operands are
preserved

J Because of exceptions, you need to
either:

1. Avoid Errors: Speculate only instructions
which cannot raise exceptions (but one
wants to speculate loads!)

2. Resolve Errors: Add a special field in the
opcode (Poison bit,...) that says when an
instruction has been speculated (see IA-64)

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 66

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Architectural Needs for

Run- vs. Compile-Time Speculation
S EEE— s

Run-Time Compile-Time
Speculation Speculation
(superscalar) (VLIW)
Where : Nothing!
to speculate? R Profiling
How to nullify Reorder buffer/ Nothing!
instructions? Commit unit Register renaming
How to handle Reorder buffer/ Poison bits/
exceptions? Commit unit speculative opcodes

Most pressure is on the compiler J

But not everything can be done by compilers!

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 67

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Compensation Code
S EEEEE—

1Set of techniques to restore the correct
flow of data and control because of global
code motion

14 cases are possible:
“*No compensation (straight-line code)
“*Join compensation
“*Split compensation
“+Join/Split compensation

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 68

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

No Compensation

X X
Instr 1 Instr 2
Instr 2 q Instr 1
Instr 3 Instr 3

Y Y

Swap 2 and 1, in a basic block

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Join Compensation

Z | /
InStI‘ 1 Instr 2 InStr 2’
InStr 2 q Instr 1
Instr 3 Instr 3
Y Y

Swap 2 and 1, where 2 is a join

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Split Compensation

X X

Instr 1 Instr 2

Instr 2 q Instr 1

Instr 3 Instr 3 Instr 1/
\ Z | \
Y Y VA

Swap 2 and 1, where 2 is a split

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Join/Split Compensation

X X 7

T /

Instr 2’
Instr 1 Instr 2
Instr 2 ‘ Instr 1 ><

Instr 3 Instr 3 Instr 1’
Cow \
Y Y W

Swap 2 and 1, where 2 is a join and a split

AdvCompArch — Exploiting ILP Statically © lenne 2006-22

Region- (e.g., Trace-) Scheduling Is
Iterative
e

JGenerate a region (e.qg., pick the most
probable trace)

dSchedule it, and generate compensation
code

INow the control-data-flow graph is
changed: generate again a region and
schedule it again, iteratively

JUntil no more compaction is possible

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 73

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Beyond Trace Scheduling:

Superblock Scheduling
e

JExtension of trace scheduling
JMoving instructions across side entrances

(joins) is more expensive than moving
across side exits (splits)

dTherefore - find hot traces and eliminate
side entrances through tail duplication

JA superblock is a trace without side
entrances

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 74

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Superblock Formation

A

950/?/ \

B
N
D

|

exit

superblock
A
C B
C
D

AdvCompArch — Exploiting ILP Statically

N

D

v /uplicated
exit tail

L
© lenne 2006-22 m

Fighting Dependencies

 Parallel execution is limited by the need to find
independent instructions

JWe need to deal with both data and control
dependencies

1 Data:
a=b+c; g
d=a+d;

1 Control:
if (a==b)
d=c+d;

exit
v

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 76

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Dependencies:

RAW, WAR, and WAW
T RRRRRRRRRRREEAAWBDARm

add e a b

sub £f ¢ d .
mul g e £ scheduling
add 1 g h

add r3 rl r2
sub rl r4 r5 register
mul r3 r3 rl allocation
add r5 r3 ré6

WAR WAW

- WAR and WAW are “name” dependencies...
e 77

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Eliminating WAW and WAR at
Compile Time
S EEE— s
JRename: Eliminate dependencies by using
different registers at compile time
“*Need more architecturally visible registers

“In fact, Intel’s Itanium has 128 integer
registers vs. 32 of typical 32-bit superscalars

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 78

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

RAW Dependencies Are Hard to
Eliminate

 75% of values in integer registers are predictable!

a b . n
a b e f € e
>
e f e
1 If e is predictable, add and mul can occur in parallel

(plus a comparison to verify the prediction) >
Dynamically exploitable, perhaps...

1 At compile time it is hard to exploit (dynamic

compilation, etc.)...
M

\\\\\\\\\\\\\\\

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Data Dependencies in Memory:

Is There a Dependency?
e

JWAW and WAR not interesting

“*0One does not want to move stores ahead of
stores (WAW) or stores ahead of loads
(WAR), because stores are not critical anyway

JRAW is the only important one: moving a
load above a store

“+Can we? If same address, then there is a
dependency and hence not

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 80

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Example of Information Missing at

Compile Time? But...
S EEE— s

JdFor example, consider:
sw $£3, 456 ($rl)
1w $£0, 123($r0)

JOf course, we would like to start the load as
early as possible (high-latency operation)

1Is there a RAW dependence?

“* At run time:
= As soon as $r0 and $r1 are known, schedule freely unless
$r1+456 = $r0+123

= Forwarding may even hide the memory latency if RAW
detected...

“* At compile time:

mEEN
ECCLE POLYTECHNIQUE 81
FEDERALE DE LAUSANNE

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Memory Disambiguation at

Compile Time
S EEE— s

JAt run time, we have more information on
memory addresses (we have the
addresses...)

JBut at compile time we have more
time available: we can make much more
complex analyses which depend on a
wider knowledge of the code

ECCLE POLYTECHNIQUE 82
FEDERALE DE LAUSANNE

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Memory Disambiguation at

Compile Time

S E— g
for 1 =1 to 20 {

j =2 * b;
a[2 * 1 + 1] = some fn();
b =afljl;

}
1Is there an integer solution to the equation

2 +1=2b 7
dNo (/= b - 2) > No dependency possible

dTime consuming but possible at compile time...

JAlso, other speculative techniques (assume no
RAW and correct afterwards) - see later

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 83

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

ILP Compilation Techniques

S EEE— s
J We have only scratched the surface with a few examples

- Many old and new techniques:
% Aliasing analysis
< Loop unrolling, peeling, fusion, and distribution
% Software pipelining, modulo scheduling
% Trace scheduling, superblock scheduling
< With hardware support in the processor: predication, hyperblock
scheduling,...
 Usually advantage not for free:

<+ Faster only on most frequent part of the code; penalty
elsewhere - need a good static prediction of execution
frequencies

% Difficult to apply some techniques in the general case

o Sonrw]eho)w larger code (e.g., worsens the performance of the I-
cache...

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 84

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Conclusions on VLIW Compilers
e EE— ey

dMany difficult decisions

“*Which type of region is right? Traces, superblocks,
hyperblocks, treegions?

“*Which regions to optimise?
= Can one ask users to profile their code?
= Can one compile without profiling information?

%+ To unroll or not to unroll? How many times?
% To predicate or not to predicate?

“*When to allocate registers? (e.qg., before, during, or
after scheduling)

=» Powerful compiler backends for VLIWSs
are very hard to build

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 85

1A-64 and Itanium 2

(A Real VLIW Processor?!...)

ECOHLE POLY TECHMIQUE
FEDERALE DE LAUSANKE

lap

What is 1A-64? What is Itanium?
I EEEEEII———————.

[In December 1993, HP and Intel started discussing cooperation on high-end
processors

A In June 1994, HP and Intel announced a partnership to develop a
completely new 64-bit EPIC (Explicit Parallel Instruction Computing)
architecture

O VLIW-related ideas come from HP Labs, some pieces of compiler technology
from the Impact Group at University of Illinois
O Intel started implementing the IA-64 architecture (Itanium)
[The first Itanium-based systems appeared mid-2001
[Itanium 2 processor (McKinley) was released in 2002 and discontinued in
2007; other implementations followed until 2017
O Itanium 2 was the largest area and largest transistor-count processor ever
arrived on the market
O HP and Intel have poured significant investment (1 billion USD?) in the IA-
64 architecture; they sold about 55k units in 2007 vs. a market of 8.4M x86
units
d Itanium architecture reached the official end of life in 2021
P N . m
feoue roLviiamioue 87 AdvCompArch — Exploiting ILP Statically © lenne 2006-22

EPIC 128-bit Instruction Bundles

41 bits 41 bits 41 bits 5 bits

[
»

A
v
A

» & »
L] <« -

Instruction }/‘ Instruction 1 struction 0 | Template

Operation Register 1 | Register 2 | Register 3 |Predicate

A
v
A
v
A
v
A

» [
Ll] »

14 bits 7 bits 7 bits 7 bits 6 bits

il

L
fcoue poLviEciNiguE 88 AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

FEDERALE DE LAUSANNE

1St

Bundles

3rd

4th

il

ECCHLE POLYT
FEDERALE DE

Bundles

Fetch and Execution Packets

{.mii

add rl = r2, r3 l s
sub r4 = r4, r5 ;;
‘shr r7 = r4, rl2 ;;} ; Tond
{.mmi
1d8 r2 = [£11;; 1 37
st8 [rl] = r23

tbit pl, p2 = r4, 5} k)
{ .mbb >
1d8 r45 = [r55]

(p3)br.call bl = funcl 4th
(p4)br.cond Labell}

{.mfi

st4 [rd45] = ré6
fmace1=£2,£3 |
add r3 = r3, 8 ;;}

ECHNIQUE 9

LAUSANNE

Statically defined delivery
through templates

6 instructions provide:

AdvCompArch — Exploiting ILP Statically

+ 12 parallel ops/clock
for scientific computing
+ 20 parallel ops/clock for
digital content creation

Load 4 DP 2 ALU ops

(8 SP) ops via

2 Idf-pair and 2 4 DP flops

ALU ops (8 SP flops)

(postincrement)

M I | M| B | B | 6instructions provide:
+ 8 parallel ops/clock

for enterprise and
Internet applications

2 loads and 2 ALU ops

2 ALU ops 2 branch

(postincrement) instructions

24 templates define different
combinations of delivery and stop bits

L
© lenne 2006-22 m

Predication ()
e

test if (flest) {
code A}
A B else {
continuation code B} ;

d Frequent sequence for poorly predictable branches
1. Conditional branch (e.qg., if r1 == r2)
2. Speculative instructions executed
3. Branch resolved (misprediction)
4. Speculative instructions squashed
5. Correct instructions executed

- How to reduce the cost due to the sequential
execution 2-3-4? Is it possible to avoid the Branch
altogether?

mom

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Predication (ll)
e

 Practically every instruction can be executed

conditionally depending on the value of a
Boolean register (predicate)

 Special instructions set a predicate as a result
of comparisons and tests

d Example
cmp.eq pl, p2 = rl, r2;; // pl = (rl==r2)
// p2 = 'pl
(pl) sub r9 = rl0, rll // if (pl) sub..
(p2) add r5 = r6, r7 // if ('pl) add.

 Both control paths are executed
simultaneously—no more branch/jumps

ECCLE POLYTECHNIQUE 91
FEDERALE DE LAUSANNE

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Compound AND/OR for Predication
S EEE— s

if ((a==0) || (b<=5) || (e!'=d) || (f&0x2)) {
r3 = 8;

}
cmp.ne pl = r0, r0 // pl = false
add t = -5, b;; // £t =Db -5
cmp.eq.or pl = 0, a // pl = pl || (a==0) _
cmp.ge.or pl = 0, t // pl = pl || (t<=0) Slngle
cmp.ne.or pl = ¢, d // pl =pl || (c'=d) CYCKE
tbit.or pl =1, £, 1;; // pl =pl || (£f&0x2)
(pl) mov r3 = 8 // if (pl) r3 = 8

)
&9;}\&,{! 92 AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Multiway Branches Through

Predication
I EEEEEII———————.

1 Often code contains sequences of branches (e.q.,
switch in C) which would be useful to execute in

parallel
 Multiway branches:

{.mii
cmp.eq pl = rl, r2 // pl = (rl==r2)
cmp.ne p2 = 4, r5 // p2 = (xr5!'=4)
cmp.lt p3 = r8, r9} // p3 = (r8<r9)
{ .bbb
(pl) br.cond labell // if (pl) goto labell
(p2) br.cond label2 // else if (p2) goto label2

(p3) br.call b4 = label3d} // else if (p3) label3()

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 93

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Balance Between Static and

Dynamic Branch Prediction
 — o

J Predication reduces number of branches

JdHardware support in Itanium for prediction
< Two direction prediction tables
+Several target prediction schemes

I Many types of branch hints from compiler
%+ Use static only prediction (save table space)
< Taken/Not Taken (static or default value)
»Deallocate space in tables
“ Prefetch hints (no prefetch, few lines, many lines)
“*Branch Prepare instruction

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Control Speculation ()

d Goal: move loads as early as possible, even speculatively before
preceding branches (i.e., without being sure that they are really
needed)

<some code>

(pl) br.cond somewhere
/] ——-=-=--- barrier

1d rl = [r2]

<some code using rl>

// load could be speculated
// if old value rl not needed
// <- neither here nor

// in “somewhere”

<sdme code using // but..

il

L
ECOLE POLITECKNIQUE Q5 AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

FEDERALE DE LAUSANNE

Control Speculation (Il)

 Speculative loads must not raise “speculative” (false)
exceptions, thus deferred exceptions

1d.s rl = [r2] // speculative loads do not raise
// exceptions but mark the register
// with the additional NaT bit
<some code>
<some code using rl> // NaT is propagated in further
// calculations, which also
// defer exceptions
(pl) br.cond somewhere

// -——-—- barrier
<some more code using rl>
chk.s rl, fix code rl // call exception handler if needed

// to fix-up execution

- Important advantage because loads (slow operations)
can now be started earlier

.

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Data Speculation (l)

A Similarly, potential RAW dependencies through memory are to be
conservatively assumed as real dependencies - Loss of useful
reordering possibilities

[Goal: move loads as early as possible, even speculatively before
preceding stores (i.e., without being sure that the value is right)

<some code>

st [r3] = r4

/] —-—-=-=--- barrier

1d rl = [r2]

<some code using rl>

// load could be speculated.

// .but if r2==r3, rl is WRONG!

il

®
fooue ronyreciaee - 97 AdvCompArch — Explatting ILP Statically © lenne 2006-22 m

Data Speculation (ll)

 Speculative Loads get executed but mark the destination register as
“speculatively” loaded and track subsequent stores for a conflict

l1d.a rl = [r2] // speculative loads are normal
// but mark always the register
// with the additional NaT bit
<some code>
<some code using rl> // NaT is propagated in further
// calculations
st [r3] = r4 // successive stores are checked
// to see if they rewrite locations
// which were object of speculative
// loads
// —-————- barrier
<some more code using rl>
chk.a rl, fix code rl // if violated RAW dependence, call

// special fix-up routine

 Important advantage because loads (slow operations) can now be
started earlier

il

L
EcoLe POLITECKNIQUE O AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

FEDERALE DE LAUSANNE

Application State — Registers

il

ECEHLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

99

128 GRs 128 FRs 128 ARs
A ro O ar0
r1 f1 ar
Static . .
[] -
Y 31 31
A r32 32 .
L
Stacked/ - - =
rotating) . B Ll -
ri26 f126 ar126
T r127 f127 ar127
B — -l -
64 it 82 bits 64 bits

8 BRs

Rotating

b0

- b6 | b7 ¢84 bits

p62|p63 ¢ 1 bit

AR
BR
FR
GR
PR

Application register
Branch register

Floating-point register

General register
Predicate register

AdvCompArch — Exploiting ILP Statically

L
© lenne 2006-22 m

Register Model (I)
Stacked Registers

S EEE— s
 Registers #0-31 are static (normal registers)
 Each procedure sees a fresh register set from #31

onwards (max 96)
 Special instruction

alloc <local-regs>, <out-regs>

- Declares max number of registers used in a procedure
and max number of registers passed to a called

procedure

alloc 8, 3 >

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 1 00

out

Local

AdvCompArch — Exploiting ILP Statically

r42
r40

r39

r32
L
© lenne 2006-22 m

Register Model (I)

Stacked Registers

rd3
Out rd>
r4l

rdZz rdZ2

rid Local

out Cut ot £40
r4(riz rio

r3g rig

Local Local
riz riz
- - -
br.call alloc 10, 2 br.ret
The calling After a call, After an After a return,
procedure has only the 3 alloc, the everything

8 local and 3 output old output goes back as

output registers are registers are before the call
registers visible to the part of the
called routine new 10 local

A registers m
© lenne 2006-22

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 1 01

AdvCompArch — Exploiting ILP Statically

Register Model (I)

Stacked Registers

) Addresses the fact that parameter exchange through the
stack before and after a function call (arguments and
result) is very expensive if memory is a bottleneck (think
also of registers $a0-$a3 and $v0-$v1 in MIPS)

 The basic idea of is very similar to Register Windows in
the SPARC architecture but more flexible:
<+ SPARC has 128 registers R0-R127 but only 32 are visible at once
% r0-r7 = RO-R7 are Globals and always visible
% r8-r31 are a window (initially r31 = R127)
= r8-r15 = out,
= r16-r23 = locals, and
= r24-r31 = in
% At each CALL, the active window is moved down 16 registers so

that r8-r15 (outs of the previous procedure) become r24-r31 (ins
of the new procedure) and all other registers are fresh

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 1 02

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Register Model (I)

Stacked Registers

e EE— s
- What happens if one alloc’s more registers than
physically available?
< Number and type (# in/outs regs) of nested calls is dynamic!
“» SPARC generates an exception
% In Itanium, a Register Stack Engine spills registers of outer
procedures (oldest in the stack)
1 Asynchronous and autonomous spilling of the non-visible
registers in the background
< Can do spilling speculatively ahead of time
» Tries to use free Load/Store slots
% Reported effectiveness: removes 30% of Loads/Stores and
consumes only 5% of the execution slots
- One step further in dynamic speculative execution!
Weren't VLIW "static” processors?!...
P
e poirranioe 103

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Register Model (l1) — Rotating

Registers and Software Pipelining
e EE— ey

dLoop unrolling and Software Pipelining (see
before) are ways to achieve more ILP in small
loop bodies—but both have a number of
tangible limitations (e.q., larger code, limited
applicability)

dModulo Scheduling achieves the same
purpose more effectively

“*Rotating registers and Predicates are the
microarchitectural support needed to implement these
techniques

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 1 04

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Reminder: SW Pipelining Example
e ——————

LOAD /Branch Unit STORE Unit ALU Floating-Point Unit
1d $£f0, (S$rl)
1d $f6, -8(Srl)
1d $£f0, -16(Srl) addd $£f4,$f0,$f2
1d $f6, -24($rl) addd $£8,$f6,$f2
1d $£f0, -32($rl) addd $£f12,$£0,$f2
1d $f6, -40($rl) sd 0($rl), $f4 addd $f4,$f10,$£2
1d $f10, -48($rl) |sd -8($rl),$fs8 addd $£8,$f14,$£2
1d $f14, -56($rl) |sd -16($rl),$fl12 | subi $rl,$rl,24 | addd $f12,$f6,$£2
bnez $rl, Loop
sd 0($rl), Sf4 addd $£f4,$£f10,$£f2
sd -8($rl), Sf8 addd $£8,$f14,$£f2
sd -16($rl) ,S$fl12
sd -24($rl), $f4
sd -32($rl), Sf8

(P

ECCLE POLYTECHNIQUE 1 05

FEDERALE DE LAUSANNE

AdvCompArch — Exploiting ILP Statically

© lenne 2006-22

Modulo Scheduling
e

1 Goals:

< Get rid of the Prologue and Epilogue - use the
loop Kernel instead

“+»Minimize size of the Kernel
< Automate/hide loop counting

1 Solution:

“*Architectural “renaming” across iterations >
Register Rotation
= Every new iteration r32->r33, r33->r34, r34->r35, etc.

*Special use of the predicates and loop
instructions to mask out instructions in the prologue
and epilogue

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 1 06

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Software Pipelining Reminder:
Restructuring of the Loop Kernel

 Restructuring of
the loop kernel
from “vertical” v |EMuL
(sequential) to Scheduled:
“horizontal” 3 phases — 9 cycles
(parallel) |
1 Parallelism
among different v B —1
iterations

. g

FMAC BR | FMUL FMUL

3 cycles

L0_| ADD1||ADD4 \ Scheduled:

il
noe 107

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Sheet1

		

																														LD		ADD1		ADD4

																														FMUL

		BR

																														FMUL

				LD		ADD1		ADD4

																														FMAC

				FMUL

										LD		ADD1		ADD4

				FMUL						FMUL

																LD		ADD1		ADD4

				FMAC						FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC						FMUL						FMUL

																												LD		ADD1		ADD4

																FMAC						FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC						FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC						FMUL						FMUL

																																														LD		ADD1		ADD4

																																		FMAC						FMUL						FMUL

																																								FMAC						FMUL

																																														FMAC

Sheet2

		

																														LD		ADD1		ADD4

																														FMUL

		BR

																														FMUL

																														FMAC

																LD		ADD1		ADD4

				FMAC						FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC						FMUL						FMUL

																												LD		ADD1		ADD4

																FMAC						FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC						FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC						FMUL						FMUL

																																														LD		ADD1		ADD4

																																		FMAC						FMUL						FMUL

																																																				LD		ADD1		ADD4

																																								FMAC						FMUL						FMUL

Sheet3

		

										LD		ADD1		ADD4

										FMUL

		BR																																								LD		ADD1		ADD4

										FMUL																				FMAC				BR		FMUL						FMUL

										FMAC				BR

																LD		ADD1		ADD4

				FMAC				BR		FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC				BR		FMUL						FMUL

																												LD		ADD1		ADD4

																FMAC				BR		FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC				BR		FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC				BR		FMUL						FMUL

																																														LD		ADD1		ADD4

																																		FMAC				BR		FMUL						FMUL

																																																				LD		ADD1		ADD4

																																								FMAC				BR		FMUL						FMUL

Sheet4

		

														LD		ADD1		ADD4

														FMUL

																																														LD		ADD1		ADD4

														FMUL																				FMAC				BR		FMUL						FMUL

														FMAC				BR

																LD		ADD1		ADD4																																								Prologue

				FMAC				BR		FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC				BR		FMUL						FMUL

																												LD		ADD1		ADD4																												Kernel

																FMAC				BR		FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC				BR		FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC				BR		FMUL						FMUL

																																														LD		ADD1		ADD4										Epilogue

																																		FMAC				BR		FMUL						FMUL

																																																				LD		ADD1		ADD4

																																								FMAC				BR		FMUL						FMUL

Sheet5

		

														LD		ADD1		ADD4

														FMUL

																																														LD		ADD1		ADD4

														FMUL																				FMAC				BR		FMUL						FMUL

														FMAC				BR

																LD		ADD1		ADD4																																								Prologue

				FMAC				BR		FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC				BR		FMUL						FMUL

																												LD		ADD1		ADD4																												Kernel

																FMAC				BR		FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC				BR		FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC				BR		FMUL						FMUL

																																														LD		ADD1		ADD4										Epilogue

																																		FMAC				BR		FMUL						FMUL

																																																				LD		ADD1		ADD4

																																								FMAC				BR		FMUL						FMUL

Sheet1

		

																														LD		ADD1		ADD4

																														FMUL

		BR

																														FMUL

				LD		ADD1		ADD4

																														FMAC

				FMUL

										LD		ADD1		ADD4

				FMUL						FMUL

																LD		ADD1		ADD4

				FMAC						FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC						FMUL						FMUL

																												LD		ADD1		ADD4

																FMAC						FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC						FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC						FMUL						FMUL

																																														LD		ADD1		ADD4

																																		FMAC						FMUL						FMUL

																																								FMAC						FMUL

																																														FMAC

Sheet2

		

																														LD		ADD1		ADD4

																														FMUL

		BR

																														FMUL

																														FMAC

																LD		ADD1		ADD4

				FMAC						FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC						FMUL						FMUL

																												LD		ADD1		ADD4

																FMAC						FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC						FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC						FMUL						FMUL

																																														LD		ADD1		ADD4

																																		FMAC						FMUL						FMUL

																																																				LD		ADD1		ADD4

																																								FMAC						FMUL						FMUL

Sheet3

		

										LD		ADD1		ADD4

										FMUL

		BR																																								LD		ADD1		ADD4

										FMUL																				FMAC				BR		FMUL						FMUL

										FMAC				BR

																LD		ADD1		ADD4

				FMAC				BR		FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC				BR		FMUL						FMUL

																												LD		ADD1		ADD4

																FMAC				BR		FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC				BR		FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC				BR		FMUL						FMUL

																																														LD		ADD1		ADD4

																																		FMAC				BR		FMUL						FMUL

																																																				LD		ADD1		ADD4

																																								FMAC				BR		FMUL						FMUL

Sheet4

		

														LD		ADD1		ADD4

														FMUL

																																														LD		ADD1		ADD4

														FMUL																				FMAC				BR		FMUL						FMUL

														FMAC				BR

																LD		ADD1		ADD4																																								Prologue

				FMAC				BR		FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC				BR		FMUL						FMUL

																												LD		ADD1		ADD4																												Kernel

																FMAC				BR		FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC				BR		FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC				BR		FMUL						FMUL

																																														LD		ADD1		ADD4										Epilogue

																																		FMAC				BR		FMUL						FMUL

																																																				LD		ADD1		ADD4

																																								FMAC				BR		FMUL						FMUL

Sheet5

		

														LD		ADD1		ADD4

														FMUL

																																														LD		ADD1		ADD4

														FMUL																				FMAC				BR		FMUL						FMUL

														FMAC				BR

																LD		ADD1		ADD4																																								Prologue

				FMAC				BR		FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC				BR		FMUL						FMUL

																												LD		ADD1		ADD4																												Kernel

																FMAC				BR		FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC				BR		FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC				BR		FMUL						FMUL

																																														LD		ADD1		ADD4										Epilogue

																																		FMAC				BR		FMUL						FMUL

																																																				LD		ADD1		ADD4

																																								FMAC				BR		FMUL						FMUL

Modulo Scheduling
e

Suppressed phases

through predicates
< > p3 p2 p1

Suppressed phases
through predicates

A o
510|101
*q—) FMAC BR | FMuL W 8’
g drme
s
3 e o] B o
S
Q 111
8 rac] | Br [Fmu] Em -
= A
-
Q
FMAC BR | FmuL FMUL
Q e x
111
! rmac] | Br [rmu] Em|
4 LD ADD1 ADD4 o
511110
O rac|] | BrR Jemul] FMUL 8’
Q LD ADD1 ADD4 =
211(0(0
] ac] [BR |FmuL w
Rotating Predicates
I CPr N | m
fcore rouyrecuioue 108 AdvCompArch — Exploiting ILP Statically © lenne 2006-22

Sheet1

		

																														LD		ADD1		ADD4

																														FMUL

		BR

																														FMUL

				LD		ADD1		ADD4

																														FMAC

				FMUL

										LD		ADD1		ADD4

				FMUL						FMUL

																LD		ADD1		ADD4

				FMAC						FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC						FMUL						FMUL

																												LD		ADD1		ADD4

																FMAC						FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC						FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC						FMUL						FMUL

																																														LD		ADD1		ADD4

																																		FMAC						FMUL						FMUL

																																								FMAC						FMUL

																																														FMAC

Sheet2

		

																														LD		ADD1		ADD4

																														FMUL

		BR

																														FMUL

																														FMAC

																LD		ADD1		ADD4

				FMAC						FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC						FMUL						FMUL

																												LD		ADD1		ADD4

																FMAC						FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC						FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC						FMUL						FMUL

																																														LD		ADD1		ADD4

																																		FMAC						FMUL						FMUL

																																																				LD		ADD1		ADD4

																																								FMAC						FMUL						FMUL

Sheet3

		

										LD		ADD1		ADD4

										FMUL

		BR																																								LD		ADD1		ADD4

										FMUL																				FMAC				BR		FMUL						FMUL

										FMAC				BR

																LD		ADD1		ADD4

				FMAC				BR		FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC				BR		FMUL						FMUL

																												LD		ADD1		ADD4

																FMAC				BR		FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC				BR		FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC				BR		FMUL						FMUL

																																														LD		ADD1		ADD4

																																		FMAC				BR		FMUL						FMUL

																																																				LD		ADD1		ADD4

																																								FMAC				BR		FMUL						FMUL

Sheet4

		

														LD		ADD1		ADD4

														FMUL

																																														LD		ADD1		ADD4

														FMUL																				FMAC				BR		FMUL						FMUL

														FMAC				BR

																LD		ADD1		ADD4																																								Prologue

				FMAC				BR		FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC				BR		FMUL						FMUL

																												LD		ADD1		ADD4																												Kernel

																FMAC				BR		FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC				BR		FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC				BR		FMUL						FMUL

																																														LD		ADD1		ADD4										Epilogue

																																		FMAC				BR		FMUL						FMUL

																																																				LD		ADD1		ADD4

																																								FMAC				BR		FMUL						FMUL

Sheet5

		

														LD		ADD1		ADD4

														FMUL

																																														LD		ADD1		ADD4

														FMUL																				FMAC				BR		FMUL						FMUL

														FMAC				BR

																																																																p3		p2		p1

																LD		ADD1		ADD4																																								Prologue				0		0		1

				FMAC				BR		FMUL						FMUL

																						LD		ADD1		ADD4																																						0		1		1

										FMAC				BR		FMUL						FMUL

																												LD		ADD1		ADD4																												Kernel				1		1		1

																FMAC				BR		FMUL						FMUL

																																		LD		ADD1		ADD4																										1		1		1

																						FMAC				BR		FMUL						FMUL

																																								LD		ADD1		ADD4																				1		1		1

																												FMAC				BR		FMUL						FMUL

																																														LD		ADD1		ADD4										Epilogue				1		1		0

																																		FMAC				BR		FMUL						FMUL

																																																				LD		ADD1		ADD4								1		0		0

																																								FMAC				BR		FMUL						FMUL

Sheet1

		

																														LD		ADD1		ADD4

																														FMUL

		BR

																														FMUL

				LD		ADD1		ADD4

																														FMAC

				FMUL

										LD		ADD1		ADD4

				FMUL						FMUL

																LD		ADD1		ADD4

				FMAC						FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC						FMUL						FMUL

																												LD		ADD1		ADD4

																FMAC						FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC						FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC						FMUL						FMUL

																																														LD		ADD1		ADD4

																																		FMAC						FMUL						FMUL

																																								FMAC						FMUL

																																														FMAC

Sheet2

		

																														LD		ADD1		ADD4

																														FMUL

		BR

																														FMUL

																														FMAC

																LD		ADD1		ADD4

				FMAC						FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC						FMUL						FMUL

																												LD		ADD1		ADD4

																FMAC						FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC						FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC						FMUL						FMUL

																																														LD		ADD1		ADD4

																																		FMAC						FMUL						FMUL

																																																				LD		ADD1		ADD4

																																								FMAC						FMUL						FMUL

Sheet3

		

										LD		ADD1		ADD4

										FMUL

		BR																																								LD		ADD1		ADD4

										FMUL																				FMAC				BR		FMUL						FMUL

										FMAC				BR

																LD		ADD1		ADD4

				FMAC				BR		FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC				BR		FMUL						FMUL

																												LD		ADD1		ADD4

																FMAC				BR		FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC				BR		FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC				BR		FMUL						FMUL

																																														LD		ADD1		ADD4

																																		FMAC				BR		FMUL						FMUL

																																																				LD		ADD1		ADD4

																																								FMAC				BR		FMUL						FMUL

Sheet4

		

														LD		ADD1		ADD4

														FMUL

																																														LD		ADD1		ADD4

														FMUL																				FMAC				BR		FMUL						FMUL

														FMAC				BR

																LD		ADD1		ADD4																																								Prologue

				FMAC				BR		FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC				BR		FMUL						FMUL

																												LD		ADD1		ADD4																												Kernel

																FMAC				BR		FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC				BR		FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC				BR		FMUL						FMUL

																																														LD		ADD1		ADD4										Epilogue

																																		FMAC				BR		FMUL						FMUL

																																																				LD		ADD1		ADD4

																																								FMAC				BR		FMUL						FMUL

Sheet5

		

														LD		ADD1		ADD4

														FMUL

																																														LD		ADD1		ADD4

														FMUL																				FMAC				BR		FMUL						FMUL

														FMAC				BR

																																																																p3		p2		p1

																LD		ADD1		ADD4																																								Prologue				0		0		1

				FMAC				BR		FMUL						FMUL

																						LD		ADD1		ADD4																																						0		1		1

										FMAC				BR		FMUL						FMUL

																												LD		ADD1		ADD4																												Kernel				1		1		1

																FMAC				BR		FMUL						FMUL

																																		LD		ADD1		ADD4																										1		1		1

																						FMAC				BR		FMUL						FMUL

																																								LD		ADD1		ADD4																				1		1		1

																												FMAC				BR		FMUL						FMUL

																																														LD		ADD1		ADD4										Epilogue				1		1		0

																																		FMAC				BR		FMUL						FMUL

																																																				LD		ADD1		ADD4								1		0		0

																																								FMAC				BR		FMUL						FMUL

Register Model (l1) — Rotating

Registers and Loop-Type Branches
—

ctop, cexit

== ((epilog) (Special

unrolled Special actions on:
loops)

0 Loop Counter

«» Count iterations
(prologue and

(Prolog/kernel) | =0

LC-- LC=LC LC=LC LC=LC kernel)
* * + + d Epilogue Counter
EC = EC EC-- EC-- EC=EC < Count epilogue
* + + + iterations
PR[63] = 1 PR[63] =0 PR[63] =0 PR[63] =0 O Predicates
* * + + % mask out epilogue
RRB-- RRE- RR|B" RRB-RRB | O Rotate all registers
i< »l (r32>r33, 335134,
ctop: branch EC Epilog count ctop: fall-through etc.) incl. predicates
cexit: fall-through LC Loop count cexit: branch

98 7-bit adders and 42 MUXes to implement RFs stacking and rotations
P

L
foout roLyreaNioue 1 (09 AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

FEDERALE DE LAUSANNE

Example of Modulo Scheduling
e

J Add a constant to a vector

mov LC = 99 // LC = loop trip count - 1
mov EC = 4 // EC = epilogue stages + 1
mov pr.rot = 1 << 16 // plé =1, rest =0

Loop: (pl6) 1d4 r32 = [r5], 4
(pl8) add r35 = r34, r9
(pl19) st4 [r6] = r36, 4
br.ctop Loop ;;

O Remarks:
% plé to p19 in the loop: four phases in a single VLIW instruction

% Second phase empty

% 1d4 has 2-cycle latency, hence r34 is the result of 1d4

% add has 1-cycle latency, hence r36 is the result of add

% The immediate 4 in 1d4 and st4 is post added to the memory pointer

il

L
fcowe roLviecivigue 11 AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

FEDERALE DE LAUSANNE

Miscellaneous Features
e
dVery large Virtual Memory Model
s Support for 64-bit addresses = 16 billion GBytes

182-bit Floating Point support
% 32-bit Single Precision IEEE-754
% 64-bit Double Precision IEEE-754
++80-bit Double-extended Precision IEEE-754

= Two additional bits to increase efficiency

%2 x 32-bit Single Precision IEEE-754 (SIMD)

ECCLE POLYTECHNIQUE 111
FEDERALE DE LAUSANNE

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Itanium 2 Chip

Second commercial %
implementation of IA-64

1GHz in a .18um CMQOS 6M
process

8-stage pipeline
Issues up to 8 instructions per
cycle on 19 (?) execution units

16Kb+16Kb L1 Data and
Instruction caches

256Kb L2 unified cache
3Mb L3 on-chip unified cache

128-bit data bus, sustaining
400Mbit/s/pin = 6.4 Gbit/s

Huge die:
“» 400mm? v
«»» 221M transistors

21.6 mm

Source: Naffziger et al., © IEEE 2002

C oo O 00 O O

o 19.5mm

il

—>
L
fcoLe roLyrEcuioue - 112 AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

2007 sJduye) @ ‘Hoday 10ssa004doudlly :924n0S

lap)

Chip

© lenne 2006-22

3
£
2
=
©
—

Itanium 2 Processor Pipeline
S EEE— s

B

ranch prediction |=

Pipeline
A IP- Next | g stages
relative address L1l L1l = Instruction- 1A-32
predicion = T P instruction sireaming : g
cache || buffer engine L3 =
- TLB Front
B o *-_““I“t“_t'-*_t-:-% """" * """ - end
IP-relative address Nsiructian buiter:
and refurn stack bufer 8 bundles (24 instructions) E
Pattemn Instruction decode and dispersal o
history mim{mIm] 1] [FIF][B8]B]B &
Reqister = Integer FP =
stack engine renamer —#=[renamer e
___ Yy ¥y vy yy vyry | [
Scoreboard and 3 Integer FP B [
hazard detection gl register file ™ re;?_llster ‘E T
ile 5}
--- = I .
: ' L0][Tne ' 2 |-w | Back
L2D ALAT nieger N
TLE ||32 entries ‘ cache H ALU (g) Branch £ |EE end
| | ——— L— | Integer (| N i .
multimedia
(6) N o
o & E
i L. oo U e 1 £ |l .
_t Hardware —t g8
page g eE
o o
La walker uﬂ: =
N L2 = T = D
and -+
cache system &
interface
ALAT Advanced-load address table REG Register file read
TLE Translation look-aside buffer EXE ALU execution
IPG Instruction pointer generation and fetch DET Exception detection
ROT Instruction rotation WRB Writs back
EXP Instruction template decode, expand, and disperse FPx Floating-point pipe stage
REM Rename (for register stack and rotating registers) and decode

il

fcoLe roLyieciioue 114 AdvCompArch — Exploiting ILP Statically © lenne 2006-22

McNairy and Soltis, © IEEE 2003

Source

Source: Microprocessor Report, © Cahners 2009

Intel 1-core AMD 1-core Intel 2-core AMD 2-core Intel 4-core AMD 4-core Intel 6-core c u rre n t

Processor Xeon Opteron 854 Xeon X5270 ' Opteron 8224SE
Bit-width 32/64-bit 32/64-bit 32/64-bit 32/64-bit 32/64-bit 32/64-bit 32/64-bit =
Cores/chip x E
Threads/core 1x2 1 2x1 2 o ! ox! HI h- nd
Clock Rate 3.80GHz 2.80GHz 3.50GHz 3.20GHz 2.93GHz 2.50GHz 2.67GHz
Cache: L1-L2-L3 - 12K/16K - 64K/64K - 2 x 32K/32K - 2 x 64K/64K - 4 x 32K/32K - 4 x 64K/64K - 6 x 32K/32K -
1/D or Unified 2M - N/A 1M - N/A 6M - NA 2x 1M - N/A 2 x4M - N/A 4 x512K - 2M 3 x3M - 16M
Execution Rate/Core 3 Instructions 3 Instructions { Cor_nplex * 3 Instructions i C°".‘P'e" * 3 Instructions i Cor_nplex *
3 Simple 3 Simple 3 Simple
Pipeline Stages 31 12int /17 fp 14 12int /17 fp 14 12int /17 fp 14
Out of Order 126 72 96 72 96 72 %6
Memory Bus 800MHz 6.4GB/s 1333MHz 10.6GB/s 1066MHz 10.6GB/s 1064MHz
Package LGA-775 uPGA 940 LGA-771 LGA-1207 LGA-771 LGA-1207 LGA-771
IC Process 90nm 7M 90nm 9M 45nm 90nm 9M 65nm 8M 65nm 11M 45nm _
Die Size 109mm? 106 mm? 107mm? 227mm? 2 x 143mm? 283mm? 503mm?
Transistors 169M 120M 410M 233M 2x291M 463M 1900M
List Price (Intro) $903 $1,514 $1,172 $2,149 $2,301 $2,149 $2,729
Power (Max) 110W 93w 80W 120W 130W 105W 130W
Availability 3Q05 3Q05 3Q08 3Q07 3Q07 2Q08 4Q08 It worksl m
Scalability 1-2 Chips 2-4 Chips 1-2 Chips 1-4 Chips 1-4 Chips 2-4 Chips 1-4 Chips =
SPECint/fp2006 'f
[Cores] 11.4/11.7 [2] 11.2/12.1 21 | 265%/25.5%[4] | 14.1/1421[8] | 21.77/18.9Y [16] | 14.4/18.5% [8] | 22.0%/22.3* [24] But IT one com pa res
?gg::;;t/fp2006_rate 209/1881[2] | 41.4/456[4] | 84.9%57.7%[4] | 105/96.7 (8] 184Y/108 [16] | 170%/156* [16] | 274%/142* [24] It : 2 d
x86 Codename Irwindale Athens Wolfdale Santa Rosa Tigerton Barcelona Dunnington a n I u m a n
Microarchitecture Netburst K8 Core K8 Core K10 Core
Intel Intel 1BM 1BM Fujitsu Fujitsu Sun 1—CO re Xeon
Processor Itanium 2 9050 | Itanium 9150M POWER5+ POWER6 SPARC64 VI SPARC64 VII UltraSPARC T2+
Bit-width 64-bit 64-bit 64-bit 64-bit 64-bit 64-bit 64-bit h I
Cores/Chip x 2x2 2x2 2x2 2x2 2x2 4x2 8x8 (Same tec no OQY)’
Threads/Core H 1
Clock Rate st 1.60GHz 1.67GHz 2.20GHz 5.00GHz 2.40GHz 2.52GHz 1.40GHz Ita n | u m 2 has SI |g htly
Cache: L1-L2-L3 - 2 x 16K/16K - 2 x 16K/16K - 2 x 64K/32K 2 x 64K/64K - 2 x 128K/128K - 4 x 64K/64K - 8 x 8K/16K -
1/D or Unified 1M/256K - 1M/256K - 1.92M - 2 x4M - 6M - N/A 6M - N/A 4M - NA b f
orem | oMo | semots 2ot etter performance
Execution Rate/Core 6 Issue 6 Issue 5 Issue 7 Issue 4 Issue 4 Issue 16 Issue
Pipeline Stages 8 8 15 13 15 15 8int/ 12 fp (+3O—500/0)
Out of Order None None 200 Limited 64 64 None
Memory Bus 8.5GB/s 10.6GB/s 12.8GB/s 75GB/s 8GB/s 8GB/s 42.7GB/s h 1 f
Package mPGA-700 mPGA-700 MCM-5370 Pins N/A 412 1/0 Pins 412 1/0 Pins 1831 Pins at t e prlce O
IC Process 90nm 7M 90nm 7M 90nm 10M 65nm 10M 90nm 10M 65nm 11M 65nm -
Die Size 596mm? 596mm? 245mm? 341mm? 421mm? 400mm? 342mm? ~n 6 times Ia rger area
Transistors — ’ 1.72B 1.72B 276M 790M 540M 600M 503M
List Price (Intro) $3,692 $3,692 N/A N/A N/A N/A N/A a n d
Power (Max) — ’ 104W 104W 100W >100W 120W 135W 95W
Availability 3Q06 4Q07 4Q05 2Q08 2Q07 3Q08 2Q08 =
Scalability 1-64 Chips 8-128 Chips 1-32 Chips 2-32 Chips 4-64 Chips 4-64 Chips 2 Chips ~N 10 tl mes more
?gsrc;s"]t/ 200G 145/173 121 N/A 105/12.9 111 | 158%/201 111 | 97/21.77 321 | 10.5%/25.0 [64] N/A tra nSiS tors
fngei;”fpzoos—’ate 1534/1671 [128] | 2893/N/A [256] || 197/229[16] | 1837%/1822 [64] |1111/1160 [128] |2088%/1861* [256]| 142/111 [16] (LR
Architecture Status Inactive Active Inactive Active Inactive Active Active
All SPEC scores are base. * Score measured at 4. Z (Not b. Z).
P .

Ecoe poLYTECHNIQUE 11§ AdvCompArch — Exploiting ILP Statically © lenne 2006-22

FEDERALE DE LAUSANNE

But! Mutual Exclusion of Static and

Dynamic Scheduling? No...
B
dItanium (IA-64) code is EPIC—that is, it is

statically scheduled in 3-instruction 128-bit
bundles

dMerced (2001) and McKinley (2002) issue in
order 2 bundles in parallel

A The business importance of binary compatibility,
will possibly make future implementation
of IA-64 dynamically scheduled sometimes
in the (not-too-near?) future

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 1 1 6

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Two Ways to ILP
Both Available in High-End Systems

[T T 11 l [T 1]

VLIW . Superscalar

I l Dynamic Scheduling

l Pipelining l Cycles

Instructions

1 1
Standard

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 1 1 7

Conclusions on Real VLIWs
-]

“Fallacy: There is a simple approach to
multiple-issue processors that yields high
performance without a significant investment
in silicon area or design complexity”

Hennessy & Patterson, CA:AQA

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 1 1 8

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

VLIW Can Be Good for Embedded
Processors
B
1 Cost used to be the only concern; now
performance/cost is at premium and still not

performance alone as in PCs (Intel model);
performance is often a constraint

[Binary compatibility is less of an issue for
embedded systems

dMany embedded applications have an obvious
parallelism

J Manual optimizations are possible (tune compiler
switches, annotate code with pragmas, etc.)

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 1 1 9

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Dual Cluster DSPs
T1I DSP TMS320C64Xx

.y Frogram Fetch
25?‘ Instruction Drispatch “ontol/Satus
Instruction Decode registers
A o
Register Bank A Register Bank B §
(32 x 32b} (32 % 32b) — o
- o
=
sk L L Lol e [| |&] | o
Pz | | | o
o)
Q.
? g
L J =
?
AL [ALLIM AL ALLIZ ALLIE (| ALLIa M LI ALLIS bt
QO
a2 s Bz g sz} | | g.
2 m32 o
S
1 =
? a
e
I :
Progmm Cata Data Eus 1 (24h) > &
flerony Memory *
Data Bus 2 (5467 >

il

L
feowe roLvicamiooe 4120 AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

Qualcomm Hexagon v5 DSP
e EE— ey

I-TLB 32KB Instruction Cache |«

1 128 (4 instr)
Instruction Fetch and Decode

PC

A 4

Load/ Load/ Vector Vector
Store Store ALU ALU

F Y Y 11 F Y F Y Y A & A

|32 | 32 64 64

v \ 4

T General Registers (32x32 bits)

64 I
v 9

D-TLB 32KB Data Cache

L2 Cache

Yy

Source: Microprocessor Report, © MPR 2013

In Qualcomm Snapdragon since 2006

il

®
fooue roLviamiooe 4121 AdvCompArch — Exploiting ILP Statically © lenne 2006-25 m

Meteor Lake Al Accelerator (NPU)

Even inside . Shave Variable-Length Instruction
Intel PC Predicate| Branch | Ld/St 0 | Ld/St 1 | Integer | Scalar | Vector |Cmp/Mv |
nce Processors
one can find
Al accelerators Scratchpad
that use VLIWSs a—

> Fetch

SoC Bus }
I /_ | VLIW Decode |
|

y A
Runtime DMA 1 1 l l l l l
CPU MMU Engine Prgd Branch| | Load/ | | Load/ | |Integer | |Scalar | |Vector| |Comp/
Unit Unit Store Store ALU ALU ALU Move
Scratchpad SRAM (4 MB) T T I 1 I I I

[Integer Register File]

L2 Cache (256 KB) | Vector Register File |

._.} +——— Scratchpad

Source: Microprocessor Report, © TechInsights 2023

Neural Compute Engine ural Compute Engin
Activation ct |2 KB D-Cache j~— L2 cache
Sheve Functions Shawe ELU
DSP 2 048 DSP 2,048
b;1 AC Data MAC Data ,]
shawe || Amay |=S0 Il oiowe || Amay | LSOO Google’s TensorCore is a VLIW
Load/ Load/ g)))
DSP store ||| PSP Store Grog’s LPU is a huge statically scheduled chip

etc.

il

L
fcoLe roLyTECuNIoUE 22 AdvCompArch — Exploiting ILP Statically © lenne 2006-25 m

References on VLIW

S EEE— s
2 AQA 5% ed., Appendix H

1 B. R. Rau and J. A. Fisher, Instruction-Level Parallel
Processing: History, Overview, and Perspective, The
Journal of Supercomputing, vol. 7, p. 9-50, 1993

M. S. Schlansker et al., Achieving High Levels of
Instruction-Level Parallelism with Reduced Hardware
Complexity, HP Labs Technical Report HPL-96-120,
November 1994

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 1 23

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

References on 1A-64 and Itanium

 C. McNairy and D. Soltis, Itanium 2 Processor
Microarchitecture, IEEE Micro, Mar./Apr. 2003

' S. D. Naffziger et al., 7The Implementation of the Itanium
2 Microprocessor, IEEE JSSC, November 2002

K. Krewell, Itanium 2 Arrives with a Benchmarking Bang,
MPR, August 2002

 J. Huck et al., Introducing the IA-64 Architecture, 1IEEE
Micro, Sept./Oct. 2000

- H. Sharangpani and K. Arora, Itanium Processor
Microarchitecture, IEEE Micro, Sept./Oct. 2000

 J. Bharadwaj, 7he Intel IA-64 Compiler Code Generator,
IEEE Micro, Sept./Oct. 2000

ECOLE POLY TECHMIQUE
FEDERALE DE LAUSANNE 1 24

L
AdvCompArch — Exploiting ILP Statically © lenne 2006-22 m

	Advanced Computer Architecture�—�Part I: General Purpose�Exploiting ILP Statically
	1
	Very Long Instruction Word:�An Alternate Way of Extracting ILP
	Sequential  Pipelined  Multiple Issue
	3 Requirements to Obtain CPI < 1
	(Dynamically Scheduled) Superscalar Processor
	Run Time vs. Compiler Time�Scheduling
	Dynamic Scheduler
	Dynamic Scheduler
	(Statically Scheduled) Very Long Instruction Word Processor
	How to exploit Instruction Level Parallelism
	Traditional Code vs. VLIW Code
	VLIW Main Advantage: �Low Hardware Complexity
	A Different Split between Software and Hardware
	A Different Split between Software and Hardware
	Challenges of VLIW
	2
	Larger Code Is a Serious Problem
	Code Compression: Differentiate Fetch Packet and Execute Packet
	Typical VLIW Code Compression
	Code Bloating Solved?
	3
	NUAL Semantics Assumes More…
	VLIW Binary Is Incompatible with More Aggressive Implementations
	VLIW Binary Incompatibility
	Problem #1�Latency Cannot Increase
	Why Latency Could Ever Increase?
	Problem #2�Latency Cannot Decrease Either!
	4
	Typical Code May Have Limited ILP
	Typical Code May Have Limited ILP
	Fighting Dependencies
	Overcoming Control Dependencies: Predicated Execution
	Predicated Execution
	Predicated Execution Needs Architectural Support
	Predicated Execution Makes Basic Blocks Larger
	Predication Support �Can Be Partial or Full
	Predication�without Architectural Support…
	Predication�without Architectural Support…
	Overcoming Control Dependencies: Loop Transformations
	Loop Peeling
	Loop Fusion
	Loop Distribution
	Creating Larger Loop Bodies:�Loop Unrolling
	Example of Loop Unrolling
	Before Unrolling
	Loop Unrolling Idea
	Unrolled and Rescheduled
	No Architectural Extension Required (So Far…)
	VLIW Code Bloating Revisited…
	Beyond Loop Unrolling:�Software Pipelining
	Software Pipelining
	Software Pipelining Idea
	Software Pipelining�Prologue, Body, and Epilogue
	SW Pipelining Example
	Again, Unroll the Loop
	Unrolled Loop Schedule
	Identify the Regular Kernel
	Modified SW Pipelining Example�(All Unit Latencies)
	Why “SW Pipelining”?
	Overcoming Nonloop Control Dependences: Trace Scheduling
	Register Renaming as a Way to Compensate
	Trace Scheduling
	What Is Trace Scheduling?�Static Speculation
	Run Time vs. Compile Time�Speculation
	Compile Time Speculation
	Architectural Needs for �Run- vs. Compile-Time Speculation
	Compensation Code
	No Compensation
	Join Compensation
	Split Compensation
	Join/Split Compensation
	Region- (e.g., Trace-) Scheduling Is Iterative
	Beyond Trace Scheduling: �Superblock Scheduling
	Superblock Formation
	Fighting Dependencies
	Dependencies: �RAW, WAR, and WAW
	Eliminating WAW and WAR at Compile Time
	RAW Dependencies Are Hard to Eliminate
	Data Dependencies in Memory:�Is There a Dependency?
	Example of Information Missing at Compile Time? But…
	Memory Disambiguation at �Compile Time
	Memory Disambiguation at �Compile Time
	ILP Compilation Techniques
	Conclusions on VLIW Compilers
	5
	What is IA-64? What is Itanium?
	EPIC 128-bit Instruction Bundles
	Bundles�Fetch and Execution Packets
	Predication (I)
	Predication (II)
	Compound AND/OR for Predication
	Multiway Branches Through Predication
	Balance Between Static and Dynamic Branch Prediction
	Control Speculation (I)
	Control Speculation (II)
	Data Speculation (I)
	Data Speculation (II)
	Application State — Registers
	Register Model (I)�Stacked Registers
	Register Model (I)�Stacked Registers
	Register Model (I)�Stacked Registers
	Register Model (I)�Stacked Registers
	Register Model (II) — Rotating Registers and Software Pipelining
	Reminder: SW Pipelining Example
	Modulo Scheduling
	Software Pipelining Reminder: �Restructuring of the Loop Kernel
	Modulo Scheduling
	Register Model (II) — Rotating Registers and Loop-Type Branches
	Example of Modulo Scheduling
	Miscellaneous Features
	Itanium 2 Chip
	Itanium 2�Chip
	Itanium 2 Processor Pipeline
	Current �High-End �Processors
	But! Mutual Exclusion of Static and Dynamic Scheduling? No…
	Two Ways to ILP�Both Available in High-End Systems
	Conclusions on Real VLIWs
	VLIW Can Be Good for Embedded Processors
	Dual Cluster DSPs�TI DSP TMS320C64x
	Qualcomm Hexagon v5 DSP
	Meteor Lake AI Accelerator (NPU)
	References on VLIW
	References on IA-64 and Itanium

