
Advanced Computer Architecture
—

Part I: General Purpose
Exploiting ILP Statically

Paolo.Ienne@epfl.ch
EPFL – I&C – LAP

mailto:Paolo.Ienne@epfl.ch

1
VLIW and EPIC? Another Way to ILP

(What if I Now Threw It All Away?!…)

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically3

Very Long Instruction Word:
An Alternate Way of Extracting ILP

Instructions

Cycles

VLIW

Pipelining

Standard

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically4

Sequential  Pipelined  Multiple Issue

time

ideal CPI < 1

time

ideal CPI = n

time

ideal CPI = 1

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically5

3 Requirements to Obtain CPI < 1

1. Machine parallelism
The machine is equipped with multiple datapaths
(pipelines)

2. Application parallelism
The application program has inherent parallelism
that can be exploited

3. Compiler “cleverness”
The compiler needs to discover the application
parallelism and expose it to the machine

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically6

(Dynamically Scheduled)
Superscalar Processor

Dynamic
Scheduling:

What each unit
does in each cycle

is decided at
execution time in

hardware

Instruction Memory

FP UnitALU 1Register Files Branch
Unit

Load/Store
UnitALU 2

Dynamic Scheduler

1234:
1235:
1236:
1237:
1238: 32-64 bits

Reservation Stations,
Scoreboard, etc.

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically7

Run Time vs. Compiler Time
Scheduling

What does it mean to schedule?
It means to decide WHEN and WHERE each

instruction is executed
Scheduling happens at run time in superscalars

and it happens exclusively at compile time in
VLIWs

Run time scheduling in superscalars requires
considerable resources in the processor hardware
Reservation stations and reorder buffer
Renaming registers and various sorts of mapping

tables
Etc.

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically8

Dynamic Scheduler

Large amount of logic, significant area cost
PowerPC 750 Instruction Sequencer is approx. 70%

of the area all execution units! (Integer units + Load/
Store units + FP unit)

Cycle time limited by scheduling logic
Design verification extremely complex
Design-for-Testability (DFT) complex
Very complex irregular logic

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically9

Dynamic Scheduler

 Scheduling complexity (e.g., checking dependences)
is typically of the order of the square in the issue rate
(R)

 Strong limit to ILP exploitation

In-flight Instructions (kR)

Fetched
Instructions
To Execute

(R)














 





























































































  

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically10

(Statically Scheduled) Very Long
Instruction Word Processor

Static
Scheduling:

What each unit
does in each cycle

is decided at
compile time in

software

FP UnitALU 1Register Files Branch
Unit

Load/Store
UnitALU 2

1234:
1235:
1236:
1237:
1238:

128-512 bitsInstruction Memory

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically11

How to exploit Instruction Level
Parallelism

Superscalar Processor
Hardware detects parallelism among instructions
Scheduling is first performed at compile time, but

with very loose information on the architecture the
program will be run on

Final scheduling is performed at run time

VLIW (or EPIC) Processor
Software detects parallelism among instructions
Scheduling is performed at compile time

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically12

Traditional Code vs. VLIW Code

op 1
op 2
op 3
op 4
op 5
op 6

op 1 op 6

op 2
op 5

op 7
op 3

op 12

op 8

NOP
op 4NOPNOP

NOP
NOP
NOP
NOP

NOP

NOP NOP
NOP
op 17
op 16

NOP
NOP

1000:
1001:
1002:
1003:
1004:
1005:

1000:
1001:
1002:
1003:
1004:
1005:

VLIWTraditional

cycles = instructionscycles != instructions
latency-independent

semantics
(Unit-Assumed Latency)

latency-dependent
semantics

(Non Unit-Assumed Latency)

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically13

VLIW Main Advantage:
Low Hardware Complexity

Area Advantage: No need for the
hardware used in superscalars for dynamic
dependence analysis  more execution
units

Timing Advantage: No need for
complex dependence analysis every cycle
 clock frequency can be higher

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically14

A Different Split between Software
and Hardware

Dependency
Analysis

Program

Front-End
Optimisation

Resource
Allocation

(Scheduling)

Dependency
Analysis

Resource
Allocation

(Scheduling)

Execution

Compiler
(software,

static)

Processor
(hardware,
dynamic)

VLIW/EPIC

Superscalar

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically15

A Different Split between Software
and Hardware

…
Loop: ld $f0, ($r1)

addd $f4, $f0, $f2
sd ($r1), $f4
subi $r1, $r1, 8
bnez $r1, Loop
…

…
Loop: ld $f0, ($r1)

addd $f4, $f0, $f2
sd ($r1), $f4
ld $f6, ($r1-8)
addd $f8, $f6, $f2
sd ($r1-8), $f8
ld $f10, ($r1-16)
addd $f12, $f10, $f2
sd ($r1-16), $f12
ld $f14, ($r1-24)
addd $f16, $f14, $f2
sd ($r1-24), $f16
ld $f18, ($r1-32)
addd $f20, $f18, $f2
sd ($r1-32), $f20
subi $r1, $r1, 40
bnez $r1, Loop
…

…
Loop: ld $f0, ($r1)

ld $f6, ($r1)
ld $f10, ($r1) addd $f4, $f0, $f2
ld $f14, ($r1) addd $f8, $f6, $f2
ld $f18, ($r1) addd $f12, $f10, $f2
sd ($r1), $f4 addd $f16, $f14, $f2
sd ($r1-8), $f8 addd $f20, $f18, $f2
sd ($r1-16), $f12
sd ($r1-24), $f16
sd ($r1-32), $f20
subi $r1, $r1, 40
bnez $r1, Loop
…

SW
(= Complier)

Source code available
(higher level information)
Global analysis possible
(variable lifecycle, etc.)

HW
(= Instruction Scheduler)

Run-time information available
(actual data, addresses, pointers, etc.)

VLIW

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically16

Challenges of VLIW

 Compiler Technology
 Compiler now responsible for scheduling
 Most severe limitation until recently (VLIW idea is

around since the 70s!)
 Binary Incompatibility
 Consequence of the larger exposure of the

microarchitecture (= implementation choices) in the
architecture (e.g., NUAL semantics)

 Code Bloating
 All those NOPs occupy memory space and thus cost
 But there are also other reasons!…

2
The Code Bloating Problem

(Memory Is Not That Cheap—and More…)

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically18

 In a first approximation, the problem is due to the
explicit NOPs

 Not just a DRAM cost issue (main memory is cheap…),
but has weird impacts on cache performance (size, cache
pollution, associativity, etc.)

Larger Code Is a Serious Problem

op 1 op 6

op 2
op 5

op 7
op 3

op 12

op 8

NOP
op 4NOPNOP

NOP
NOP
NOP
NOP

NOP

NOP NOP
NOP
op 17
op 16

NOP
NOP

1000:
1001:
1002:
1003:
1004:
1005:

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically19

Code Compression: Differentiate
Fetch Packet and Execute Packet

D1
A1

C0
C1

A0
B1

B
A0

1

load nop add2 muld
nop add1 nop nop

nop nop nop
store sub nop nop

add3

add1 load add2 muld
store sub add3 nop

nop nop nopnop

Separator
(1 = last instruction of a VLIW) Execution Unit

Compressed
Fetch Packets in

memory

Uncompressed
Execute Packets
for the processor

(classic VLIW code)

A B C D
crossbar

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically20

Typical VLIW Code Compression

Instructions are encoded in a less
straightforward way
Separator bit = 0: next operation is in parallel
Separator bit = 1: next operation is sequential
Unit number: specifies where to execute operation

Price to pay for shorter code:
Fetch/Decode logic more complex
Crossbar for shipping operations to the right FU,

complexity proportional to n2

Hardware was supposed to be trivial and O(n)…

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically21

Code Bloating Solved?

A trivial but significant reason for bloating
is removed
More fundamental and difficult to

overcome reasons exist which still
increase significantly the code size
See later…

3
The Binary Compatibility Problem

(Not everybody likes—or can—recompile…)

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically23

NUAL Semantics Assumes More…

op 1 op 6

op 2
op 5

op 7
op 3

op 12

op 8

NOP
op 4NOPNOP

NOP
NOP
NOP
NOP

NOP

NOP NOP
NOP
op 17
op 16

NOP
NOP

1000:
1001:
1002:
1003:
1004:
1005:

cycles = instructions
latency-dependent

semantics
(Non Unit-Assumed Latency)

More information is now implicit in the code:
1. Instruction latencies—used to enforce correct handling of data

dependencies
2. Available hardware parallelism—units scheduled on each cycle

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically24

VLIW Binary Is Incompatible with
More Aggressive Implementations

FP UnitALU 1 Branch
Unit

Load/Store
UnitALU 2

Dynamic Scheduler

FP Unit 2ALU 3

Traditional Code

FP UnitALU 1 Branch
Unit

Load/Store
UnitALU 2 FP Unit 2ALU 3

VLIW Code

???

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically25

VLIW Binary Incompatibility

More subtle sources of incompatibility
Changes in instruction latencies—e.g., load

latencies increases (logic-memory gap)
No fully satisfactory solution exists today
Partial or research solutions:
Recompile (possible in some kind of

systems—not for consumer PC market…)
Special VLIW coding/restrictions
Dynamic Binary Translation is emerging—see

future course

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically26

Problem #1
Latency Cannot Increase

op 1 op 6

op 2
op 5

op 7
op 3

op 12

op 8

NOP
op 4NOPNOP

NOP
NOP
NOP
NOP

NOP

NOP NOP
NOP
op 17
op 16

NOP
NOP

1000:
1001:
1002:
1003:
1004:
1005:

cycles = instructions
latency-dependent

semantics
(Non Unit-Assumed Latency)

Trivially, higher latency may violate data dependencies
 E.g., the operands of “op 2” are no longer available if the

latency of “op 1” increases.

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically27

Why Latency Could Ever Increase?

Latency can sometimes increase in next
generation machines:
E.g. memory / logic growing gap

load R2,(R5)

add R3,R3,R2

LOAD

ADD

1 cycle,
25 ns

LOAD

ADD

1 cycle,
15 ns

Previous
gen.

Next
gen.

load: 1 cycle

0

1

 2 cycles

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically28

Problem #2
Latency Cannot Decrease Either!

WB

a=b/3e=e+f
c=e+4
d=c*2

b=a+2

a = b / 3;
b = a + 2;
e = e + f;
c = e + 4;
d = c * 2;

If division takes 3 cycles, and addition takes 1 cycle…

If, in the next generation, division takes
only 2 cycles  wrong result!

Values c and a can be assigned to the same physical
register in this schedule (a is dead while c is alive)

4
The Compiler Problem

(Not Just a New Compiler…)

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically30

Typical Code May Have Limited ILP

 Example:
Loop: ld $f0, ($r1) // read array elem.

addd $f4, $f0, $f2 // add constant
sd ($r1), $f4 // write array elem.

subi $r1, $r1, 8 // next element
bnez $r1, Loop

 Schedule on a VLIW processor
 Slot 1: Load/Store Unit or Branch Unit
 Slot 2: ALU
 Slot 3: Floating-Point Unit

 Latencies:
 Load/Store  2 cycles
 Integer  2 cycles
 Branch  2 cycles
 Floating Point  3 cycles

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically31

Typical Code May Have Limited ILP

 Scheduled VLIW code:

 Execution time for $r1 = 80:
 80 / 8 = 10 iterations; 9 cycles per iteration  90 cycles

Load/Store/Branch Unit ALU Floating-Point Unit
ld $f0, ($r1) nop nop Cycle 1
nop nop nop Cycle 2
nop nop addd $f4, $f0, $f2 Cycle 3
nop nop nop Cycle 4
nop nop nop Cycle 5
sd ($r1), $f4 subi $r1, $r1, 8 nop Cycle 6
nop nop nop Cycle 7
bnez $r1, Loop nop nop Cycle 8
nop nop nop Cycle 9

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically32

Fighting Dependencies

Parallel execution is limited by the need to find
independent instructions

We need to deal with both data and control
dependencies

Data:
a=b+c;
d=a+d;

Control:
if (a==b)

d=c+d; exit

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically33

Overcoming Control Dependencies:
Predicated Execution

If
We have abundant resources (machine

parallelism), and
We do not care about power dissipation, etc.

but just look for performance
We can execute all paths in parallel

without making a choice

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically34

Predicated Execution

Remove branches via If Conversion:
if (a==b) c=2*d else c=3*d

becomes
P1 = (a==b)
(P1) c=2*d (!P1) c=3*d

Introduce predicate P1 (outcome of jump)
Instructions can now be all executed in

parallel, but they are committed only if the
relative predicate is true

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically35

Predicated Execution Needs
Architectural Support

We need:

1. An instruction () to
set the predicate

2. Predicate registers
3. An additional field in the

instruction word
4. A way to check and

delay exceptions

P1 !P1

P2 !P2

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically36

Predicated Execution Makes Basic
Blocks Larger

P1 !P1

P2 !P2

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically37

Predication Support
Can Be Partial or Full

Full: all instructions can be executed
conditionally
ARM (on the flags)
IA-64/Itanium (on predicate registers)

Partial: typically a single conditional
instruction
STMicroelectronics ST2xx: Select instruction
Alpha: Conditional Move instruction

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically38

Predication
without Architectural Support…

/* an excerpt from g72x.c */
/* g721encoder, mediabench */

anmant = (anmag == 0) ? 32:
(anexp >= 0) ? anmag >> anexp: anmag << -anexp;

/* an excerpt from predicated g72x.c */
/* g721encoder, mediabench */

p2 = -(anmag == 0); p3 = -(anexp >= 0);
anmant = (32 & p2) | ((anmag >> anexp) & ~p2 & p3) |

((anmag << -anexp) & ~p2 & ~p3);

Before…

After…

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically39

Predication
without Architectural Support…

 Suppose that
 Branches are very poorly predictable (p = 0.5)
 Branches costs 1 or 5 cycles (taken/untaken)
 Tests and other ALU ops cost 1 cycle
 There are several ALUs available (e.g., 3)

 Trace of normal program is
 Test  Branch  (Move || Test  Branch  Shift)
 On average 1 + (1+5)/2 + ½ + (1 + (1+5)/2 + 1)/2 = ~7 cycles

 Trace of modified program is
 2 Tests  2 Negs  2 Nots  2 Shifts, 5 Ands, 3 Ors
 Ideally some 16/3 = ~5-6 cycles

 Predication could in special cases be also a programming trick
for normal processors not supporting it in hardware!…

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically40

Overcoming Control Dependencies:
Loop Transformations

Loops are often the most important part
of code (in terms of fraction of total time)
Loops bodies can be transformed so that

more parallelism can be exploited
Loop peeling
Loop fusion
Loop distribution
Loop unrolling
Software pipelining, etc.

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically41

Loop Peeling

101

102
102 times

100 times
for (i=0;i<102;i++)

a[i]=a[i-1]+c;

for (i=0;i<100;i++)
a[i]=a[i-1]+c;

a[100]=a[99]+c;
a[101]=a[100]+c;Used with fusion (next slide)

to increase ILP

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically42

Loop Fusion

101

102

102

100 100

100
101

102

100

for (i=0;i<102;i++)
b[i]=b[i-2]+c;

for (j=0;j<100;j++)
a[j]=a[j]*2;

for (i=0;i<100;i++) {
b[i]=b[i-2]+c;
a[i]=a[i]*2;}

a[100]=a[100]*2;
a[101]=a[101]*2;Now a and b can be computed in

parallel

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically43

Loop Distribution

100

100

100

for (i=0;i<100;i++) {
b[i]=b[i-1]+c;
a[i]=b[i]+2;}

for (i=0;i<100;i++)
b[i]=b[i-1]+c;

for (i=0;i<100;i++)
a[i]=b[i]+2;

Now the second loop can be
unrolled and parallelised

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically44

Creating Larger Loop Bodies:
Loop Unrolling

i+1i

i

i+2

i+3
i++

for (i=0;i<100;i++)
a[i]=a[i]+c;

for (i=0;i<100;i=i+4) {
a[i]=a[i]+c;
a[i+1]=a[i+1]+c;
a[i+2]=a[i+2]+c;
a[i+3]=a[i+3]+c;}

i=i+4

4 times less jumps and more
scope for ILP (larger basic block)

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically45

Example of Loop Unrolling

 Example:
Loop: ld $f0, ($r1) // read array elem.

addd $f4, $f0, $f2 // add constant
sd ($r1), $f4 // write array elem.

subi $r1, $r1, 8 // next element
bnez $r1, Loop

 Schedule on a VLIW processor
 Slot 1: Load/Store Unit or Branch Unit
 Slot 2: ALU
 Slot 3: Floating-Point Unit

 Latencies:
 Load/Store  2 cycles
 Integer  2 cycles
 Branch  2 cycles
 Floating Point  3 cycles

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically46

Before Unrolling

 Scheduled VLIW code:

 Execution time for $r1 = 80:
 80 / 8 = 10 iterations; 9 cycles per iteration  90 cycles

Load/Store/Branch Unit ALU Floating-Point Unit
ld $f0, ($r1) nop nop Cycle 1
nop nop nop Cycle 2
nop nop addd $f4, $f0, $f2 Cycle 3
nop nop nop Cycle 4
nop nop nop Cycle 5
sd ($r1), $f4 subi $r1, $r1, 8 nop Cycle 6
nop nop nop Cycle 7
bnez $r1, Loop nop nop Cycle 8
nop nop nop Cycle 9

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically47

Loop Unrolling Idea

Loop: ld $f0, ($r1)
addd $f4, $f0, $f2
sd ($r1), $f4

subi $r1, $r1, 8
bnez $r1, Loop

Loop: ld $f0, ($r1)
addd $f4, $f0, $f2
sd ($r1), $f4

ld $f6, -8($r1)
addd $f8, $f6, $f2
sd -8($r1), $f8

ld $f10, -16($r1)
addd $f12, $f10, $f2
sd -16($r1), $f12

ld $f14, -24($r1)
addd $f16, $f14, $f2
sd -24($r1), $f16

ld $f18, -32($r1)
addd $f20, $f18, $f2
sd -32($r1), $f20

subi $r1, $r1, 40
bnez $r1, Loop

• Replicate body
• Update references
• Rename registers
• etc.

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically48

Unrolled and Rescheduled

 Now 80 / (5*8) = 2 iterations; 13 cycles per iteration 
26 cycles (vs. 90 cycles, more than 3x faster!)

Load/Store/Branch Unit ALU Floating-Point Unit
ld $f0, ($r1) nop nop Cycle 1
ld $f6, -8($r1) nop nop Cycle 2
ld $f10, -16($r1) nop addd $f4, $f0, $f2 Cycle 3
ld $f14, -24($r1) nop addd $f8, $f6, $f2 Cycle 4
ld $f18, -32($r1) nop addd $f12, $f10, $f2 Cycle 5
sd ($r1), $f4 nop addd $f16, $f14, $f2 Cycle 6
sd -8($r1), $f8 nop addd $f20, $f18, $f2 Cycle 7
sd -16($r1), $f12 nop nop Cycle 8
sd -24($r1), $f16 nop nop Cycle 9
sd -32($r1), $f20 subi $r1, $r1, 40 nop Cycle 10
nop nop nop Cycle 11
bnez $r1, Loop nop nop Cycle 12
nop nop nop Cycle 13

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically49

No Architectural Extension
Required (So Far…)

Some techniques seen here require architectural
extensions
Predication
Branch prediction
…

Others do not
Basic loop transformations (peeling, fusion,…)
Loop unrolling
…

Yet, they may have an indirect impact on
architectural needs—e.g., more registers

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically50

VLIW Code Bloating Revisited…

 VLIW code fundamentally larger than standard code: not only NOPs
are explicit, but aggressive unrolling multiplies real instructions

 Compare last example: 39 words vs. 5! more than 50% are NOPs!

ld $f0, ($r1) nop nop

ld $f6, -8($r1) nop nop

ld $f10, -16($r1) nop addd $f4, $f0, $f2

ld $f14, -24($r1) nop addd $f8, $f6, $f2

ld $f18, -32($r1) nop addd $f12, $f10, $f2

sd ($r1), $f4 nop addd $f16, $f14, $f2

sd -8($r1), $f8 nop addd $f20, $f18, $f2

sd -16($r1), $f12 nop nop

sd -24($r1), $f16 nop nop

sd -32($r1), $f20 subi $r1, $r1, 40 nop

nop nop nop

bnez $r1, Loop nop nop

nop nop nop

ld $f0, ($r1)

addd $f4, $f0, $f2

sd ($r1), $f4

subi $r1, $r1, 8

bnez $r1, Loop

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically51

Beyond Loop Unrolling:
Software Pipelining

Restructure the body of the loop so that
more parallelism can be extracted
Put different tasks from different iterations

in the same iteration (to exploit ILP)

BUT: Do not increase code size
(as loop unrolling does)

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically52

Software Pipelining

Consider the following simple C code snippet:

The three corresponding instructions are
dependent, they cannot be executed in parallel

Goal: restructure the loop, so that some ILP
can be exploited

load a[i]

add a[i], #1

store c[i]

for (i=0, i<7, i++) {

c[i] = a[i]+1;

}

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically53

5

3
4

6
7

original loop

Software Pipelining Idea

2
iterat. 1

2

5

3
4

iterat. 1

new loop

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically54

Software Pipelining
Prologue, Body, and Epilogue

2

5

3
4

iterat. 1

6
7

original loop

2

5

3
4

iterat. 1

new loop

PROLOGUE
load a[1]
add a[1], #1
load a[2]

store c[i]
add a[i+1], #1

load a[i+2]

EPILOGUE
store c[6]
add a[7], #1
store c[7]

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically55

SW Pipelining Example

 Same example:
Loop: ld $f0, ($r1) // read array elem.

addd $f4, $f0, $f2 // add constant
sd ($r1), $f4 // write array elem.

subi $r1, $r1, 8 // next element
bnez $r1, Loop

 Schedule on a VLIW processor
 Slot 1 and 2: Load/Store Unit or Branch Unit
 Slot 3: ALU
 Slot 4: Floating-Point Unit

 Latencies:
 Load/Store  2 cycles
 Integer  2 cycles
 Branch  2 cycles
 Floating Point  3 cycles

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically56

Again, Unroll the Loop

Loop: ld $f0, ($r1)
addd $f4, $f0, $f2
sd ($r1), $f4

subi $r1, $r1, 8
bnez $r1, Loop

Loop: ld $f0, ($r1)
addd $f4, $f0, $f2
sd ($r1), $f4

ld $f6, -8($r1)
addd $f8, $f6, $f2
sd -8($r1), $f8

ld $f10, -16($r1)
addd $f12, $f10, $f2
sd -16($r1), $f12

ld $f14, -24($r1)
addd $f16, $f14, $f2
sd -24($r1), $f16

ld $f18, -32($r1)
addd $f20, $f18, $f2
sd -32($r1), $f20

subi $r1, $r1, 40
bnez $r1, Loop

• Replicate body
• Update references
• Rename registers
• etc.

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically57

Unrolled Loop Schedule

LOAD Unit STORE Unit ALU Floating-Point
Unit

LD #0 Cycle 1
LD #1 Cycle 2
LD #2 ADDD #0 Cycle 3
LD #3 ADDD #1 Cycle 4
LD #4 ADDD #2 Cycle 5
LD #5 SD #0 ADDD #3 Cycle 6
LD #6 SD #1 ADDD #4 Cycle 7
LD #7 SD #2 ADDD #5 Cycle 8

SD #3 ADDD #6 Cycle 9
SD #4 ADDD #7 Cycle 10
SD #5 Cycle 11
SD #6 Cycle 12
SD #7 Cycle 13

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically58

Identify the Regular Kernel

Loop: LD $f0, ($r1)
ADDD $f4, $f0, $f2
SD ($r1), $f4

LD $f6, -8($r1)
ADDD $f8, $f6, $f2
SD -8($r1), $f8

LD $f10, -16($r1)
ADDD $f12, $f10, $f2
SD -16($r1), $f12

LD $f14, -24($r1)
ADDD $f16, $f14, $f2
SD -24($r1), $f16

LD $f18, -32($r1)
ADDD $f20, $f18, $f2
SD -32($r1), $f20

SUBI $r1, $r1, 40
BNEZ $r1, Loop

LOAD /Branch Unit STORE Unit ALU Floating-Point Unit

ld $f0, ($r1)

ld $f6, -8($r1)

ld $f0, -16($r1) addd $f4,$f0,$f2

ld $f6, -24($r1) addd $f8,$f6,$f2

ld $f0, -32($r1) addd $f12,$f0,$f2

ld $f6, -40($r1) sd 0($r1), $f4 addd $f4,$f10,$f2

ld $f10, -48($r1) sd -8($r1), $f8 addd $f8,$f14,$f2

ld $f14, -56($r1) sd -16($r1), $f12 subi $r1,$r1,24 addd $f12,$f6,$f2

bnez $r1, Loop

sd 0($r1), $f4 addd $f4,$f10,$f2

sd -8($r1), $f8 addd $f8,$f14,$f2

sd -16($r1), $f12

sd -24($r1), $f4

sd -32($r1), $f8

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically59

Modified SW Pipelining Example
(All Unit Latencies)

LOAD /Branch Unit
(latency ONE)

STORE Unit
(latency ONE)

ALU
(latency ONE)

Floating-Point Unit
(latency ONE)

ld $f0, ($r1)

ld $f0, -8($r1) addd $f4,$f0,$f2

ld $f0, -16($r1) sd 0($r1), $f4 subi $r1,$r1,8 addd $f4,$f0,$f2

bnez $r1, Loop

sd 0($r1), $f4 addd $f4,$f0,$f2

sd -8($r1), $f4

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically60

Why “SW Pipelining”?

Fetch (i+2)
Decode (i+1)
Execute (i)

Instructions
advancing in

parallel

HW pipelining

Load (i+2)
Add (i+1)
Store (i)

Iterations
advancing in

parallel

SW pipelining

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically61

Overcoming Nonloop Control
Dependences: Trace Scheduling

 Early technique: published by Fisher in 1981
 Optimise the most probable path by increasing the size of basic

blocks ( more chances to find ILP)
 Add compensation code in less probable paths
 Beyond basic blocks: region-based scheduling

X=X+5

95% 5%

X=X+5

X=X-5

95% 5%

This block is
now larger!

compensation
code

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically62

Register Renaming as a Way to
Compensate

 Register renaming ensures that semantics is correct in
every trace

 But, again, we need more registers…

a=g(i)

i=f(…)

95% 5%
i1=f(…)

a=g(i1)

i1=i

95% 5%

compensation
code

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically63

Trace Scheduling

1 4

2 3

5

1
2

3

Most probable trace
will be optimised

2

5

4

3

All possible (but less probable)
traces are there, plus some

compensation code

2

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically64

What Is Trace Scheduling?
Static Speculation

By moving instructions across branches to
optimise probable path, we have done
speculation

Dynamic (run time) speculation is one of
the most significant ingredients of superscalar
performance

Trace Scheduling is a form of static (compile
time) speculation, and so are superblocks,
hyperblocks,…

 Region-Based Scheduling

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically65

Run Time vs. Compile Time
Speculation

At run time: it is the hw that does it
At compile time: the compiler schedules

the speculated instruction before the
branch  It is speculated with respect to
the original code, but in the resulting code
one cannot really see it as being
speculated
It is what happens in trace scheduling

and superblock scheduling

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically66

Compile Time Speculation

 Register renaming to ensure that
correction code source operands are
preserved

 Because of exceptions, you need to
either:
1. Avoid Errors: Speculate only instructions

which cannot raise exceptions (but one
wants to speculate loads!)

2. Resolve Errors: Add a special field in the
opcode (Poison bit,…) that says when an
instruction has been speculated (see IA-64)

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically67

Architectural Needs for
Run- vs. Compile-Time Speculation

How to nullify
instructions?

Where
to speculate?

How to handle
exceptions?

Predictors Nothing!
Profiling

Reorder buffer/
Commit unit

Nothing!
Register renaming

Reorder buffer/
Commit unit

Poison bits/
speculative opcodes

Most pressure is on the compiler
But not everything can be done by compilers!

Compile-Time
Speculation

(VLIW)

Run-Time
Speculation
(superscalar)

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically68

Compensation Code

Set of techniques to restore the correct
flow of data and control because of global
code motion
4 cases are possible:
No compensation (straight-line code)
Join compensation
Split compensation
Join/Split compensation

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically69

No Compensation

Instr 1
Instr 2
Instr 3

Instr 2

Instr 3
Instr 1

X

Y

X

Y

Swap 2 and 1, in a basic block

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically70

Join Compensation

Instr 1
Instr 2
Instr 3

Instr 2

Instr 3
Instr 1

Instr 2’

X

Y

Z
X

Y

Z

Swap 2 and 1, where 2 is a join

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically71

Split Compensation

Instr 2
Instr 3

Instr 1
Instr 2

Instr 1’

Instr 1

Instr 3

X

Y
Z

X

Y Z

Swap 2 and 1, where 2 is a split

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically72

Join/Split Compensation

Instr 2
Instr 3

Instr 1
Instr 2

Instr 1’

Instr 1

Instr 3

X

Y
W

X

Y W

Z
Instr 2’

Z

Swap 2 and 1, where 2 is a join and a split

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically73

Region- (e.g., Trace-) Scheduling Is
Iterative

Generate a region (e.g., pick the most
probable trace)
Schedule it, and generate compensation

code
Now the control-data-flow graph is

changed: generate again a region and
schedule it again, iteratively
Until no more compaction is possible

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically74

Beyond Trace Scheduling:
Superblock Scheduling

Extension of trace scheduling
Moving instructions across side entrances

(joins) is more expensive than moving
across side exits (splits)
Therefore  find hot traces and eliminate

side entrances through tail duplication
A superblock is a trace without side

entrances

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically75

Superblock Formation

A

D

B C

95%

exit

A

D

B
C

exit

D

duplicated
tail

superblock

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically76

Fighting Dependencies

Parallel execution is limited by the need to find
independent instructions

We need to deal with both data and control
dependencies

Data:
a=b+c;
d=a+d;

Control:
if (a==b)

d=c+d; exit

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically77

Dependencies:
RAW, WAR, and WAW

RAW WAR WAW
WAR and WAW are “name” dependencies...

+

a b c d

+

x

—
e f

g h

add e a b
sub f c d
mul g e f
add i g h

scheduling

register
allocation

add r3 r1 r2
sub r1 r4 r5
mul r3 r3 r1
add r5 r3 r6

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically78

Eliminating WAW and WAR at
Compile Time

Rename: Eliminate dependencies by using
different registers at compile time
Need more architecturally visible registers
In fact, Intel’s Itanium has 128 integer

registers vs. 32 of typical 32-bit superscalars

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically79

RAW Dependencies Are Hard to
Eliminate

 75% of values in integer registers are predictable!

 If e is predictable, add and mul can occur in parallel
(plus a comparison to verify the prediction) 
Dynamically exploitable, perhaps...

 At compile time it is hard to exploit (dynamic
compilation, etc.)...

+

x
e f

a b

+

a b

x

ê f

e
=?

ê e

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically80

Data Dependencies in Memory:
Is There a Dependency?

WAW and WAR not interesting
One does not want to move stores ahead of

stores (WAW) or stores ahead of loads
(WAR), because stores are not critical anyway

RAW is the only important one: moving a
load above a store
Can we? If same address, then there is a

dependency and hence not

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically81

Example of Information Missing at
Compile Time? But…

For example, consider:
sw $f3, 456($r1)
lw $f0, 123($r0)

Of course, we would like to start the load as
early as possible (high-latency operation)

Is there a RAW dependence?
At run time:

 As soon as $r0 and $r1 are known, schedule freely unless
$r1+456 = $r0+123

 Forwarding may even hide the memory latency if RAW
detected…

At compile time:
 ?!…

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically82

Memory Disambiguation at
Compile Time

At run time, we have more information on
memory addresses (we have the
addresses…)
But at compile time we have more

time available: we can make much more
complex analyses which depend on a
wider knowledge of the code

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically83

Memory Disambiguation at
Compile Time

Is there an integer solution to the equation
2i + 1 = 2b ?

No (i = b - ½)  No dependency possible
Time consuming but possible at compile time…
Also, other speculative techniques (assume no

RAW and correct afterwards)  see later

for i = 1 to 20 {
j = 2 * b;
a[2 * i + 1] = some_fn();
b = a[j];

}

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically84

ILP Compilation Techniques

We have only scratched the surface with a few examples
 Many old and new techniques:

 Aliasing analysis
 Loop unrolling, peeling, fusion, and distribution
 Software pipelining, modulo scheduling
 Trace scheduling, superblock scheduling
With hardware support in the processor: predication, hyperblock

scheduling,…
 Usually advantage not for free:

 Faster only on most frequent part of the code; penalty
elsewhere  need a good static prediction of execution
frequencies

 Difficult to apply some techniques in the general case
 Somehow larger code (e.g., worsens the performance of the I-

cache…)

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically85

Conclusions on VLIW Compilers

Many difficult decisions
Which type of region is right? Traces, superblocks,

hyperblocks, treegions?
Which regions to optimise?

 Can one ask users to profile their code?
 Can one compile without profiling information?

To unroll or not to unroll? How many times?
To predicate or not to predicate?
When to allocate registers? (e.g., before, during, or

after scheduling)

 Powerful compiler backends for VLIWs
are very hard to build

5
IA-64 and Itanium 2

(A Real VLIW Processor?!…)

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically87

What is IA-64? What is Itanium?

 In December 1993, HP and Intel started discussing cooperation on high-end
processors

 In June 1994, HP and Intel announced a partnership to develop a
completely new 64-bit EPIC (Explicit Parallel Instruction Computing)
architecture

 VLIW-related ideas come from HP Labs, some pieces of compiler technology
from the Impact Group at University of Illinois

 Intel started implementing the IA-64 architecture (Itanium)
 The first Itanium-based systems appeared mid-2001
 Itanium 2 processor (McKinley) was released in 2002 and discontinued in

2007; other implementations followed until 2017
 Itanium 2 was the largest area and largest transistor-count processor ever

arrived on the market
 HP and Intel have poured significant investment (1 billion USD?) in the IA-

64 architecture; they sold about 55k units in 2007 vs. a market of 8.4M x86
units

 Itanium architecture reached the official end of life in 2021

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically88

EPIC 128-bit Instruction Bundles

Instruction 2 Instruction 1 Instruction 0 Template

Operation Register 1 Register 2 Register 3 Predicate

41 bits 41 bits 41 bits 5 bits

14 bits 7 bits 7 bits 7 bits 6 bits

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically89

Bundles
Fetch and Execution Packets

Statically defined delivery
through templates

1st

2nd

3rd

4th

{.mii
add r1 = r2, r3
sub r4 = r4, r5 ;;
shr r7 = r4, r12 ;;}
{.mmi
ld8 r2 = [r1];;
st8 [r1] = r23
tbit p1, p2 = r4, 5}
{.mbb
ld8 r45 = [r55]
(p3)br.call b1 = func1
(p4)br.cond Label1}
{.mfi
st4 [r45] = r6
fmac f1 = f2, f3
add r3 = r3, 8 ;;}

1st

2nd

3rd

4th

Cy
cle

s

Bu
nd

le
s

24 templates define different
combinations of delivery and stop bits

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically90

Predication (I)

 Frequent sequence for poorly predictable branches
1. Conditional branch (e.g., if r1 == r2)
2. Speculative instructions executed
3. Branch resolved (misprediction)
4. Speculative instructions squashed
5. Correct instructions executed

 How to reduce the cost due to the sequential
execution 2-3-4? Is it possible to avoid the Branch
altogether?

A B

test

continuation

if (test) {
code A}

else {
code B};

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically91

Predication (II)

 Practically every instruction can be executed
conditionally depending on the value of a
Boolean register (predicate)

 Special instructions set a predicate as a result
of comparisons and tests

 Example
cmp.eq p1, p2 = r1, r2;; // p1 = (r1==r2)

// p2 = !p1
(p1) sub r9 = r10, r11 // if (p1) sub…
(p2) add r5 = r6, r7 // if (!p1) add…

 Both control paths are executed
simultaneously—no more branch/jumps

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically92

Compound AND/OR for Predication

if ((a==0) || (b<=5) || (c!=d) || (f&0x2)) {
r3 = 8;

}

cmp.ne p1 = r0, r0 // p1 = false
add t = -5, b;; // t = b - 5

cmp.eq.or p1 = 0, a // p1 = p1 || (a==0)
cmp.ge.or p1 = 0, t // p1 = p1 || (t<=0)
cmp.ne.or p1 = c, d // p1 = p1 || (c!=d)
tbit.or p1 = 1, f, 1;; // p1 = p1 || (f&0x2)

(p1) mov r3 = 8 // if (p1) r3 = 8

Single
cycle

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically93

Multiway Branches Through
Predication

Often code contains sequences of branches (e.g.,
switch in C) which would be useful to execute in
parallel

Multiway branches:
{.mii

cmp.eq p1 = r1, r2 // p1 = (r1==r2)
cmp.ne p2 = 4, r5 // p2 = (r5!=4)
cmp.lt p3 = r8, r9} // p3 = (r8<r9)

{.bbb
(p1) br.cond label1 // if (p1) goto label1
(p2) br.cond label2 // else if (p2) goto label2
(p3) br.call b4 = label3} // else if (p3) label3()

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically94

Balance Between Static and
Dynamic Branch Prediction

Predication reduces number of branches
Hardware support in Itanium for prediction
Two direction prediction tables
Several target prediction schemes

Many types of branch hints from compiler
Use static only prediction (save table space)
Taken/Not Taken (static or default value)
Deallocate space in tables
Prefetch hints (no prefetch, few lines, many lines)
Branch Prepare instruction

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically95

Control Speculation (I)

 Goal: move loads as early as possible, even speculatively before
preceding branches (i.e., without being sure that they are really
needed)

<some code>
(p1) br.cond somewhere
// ------ barrier
ld r1 = [r2]
<some code using r1>

ld r1 = [r2] // load could be speculated
// if old value r1 not needed

<some code> // <- neither here nor
(p1) br.cond somewhere // in “somewhere”
// ------ barrier
<some code using r1> // but…

NO!

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically96

Control Speculation (II)

 Speculative loads must not raise “speculative” (false)
exceptions, thus deferred exceptions

 Important advantage because loads (slow operations)
can now be started earlier

ld.s r1 = [r2] // speculative loads do not raise
// exceptions but mark the register
// with the additional NaT bit

<some code>
<some code using r1> // NaT is propagated in further

// calculations, which also
// defer exceptions

(p1) br.cond somewhere
// ------ barrier
<some more code using r1>
chk.s r1, fix_code_r1 // call exception handler if needed

// to fix-up execution

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically97

Data Speculation (I)

 Similarly, potential RAW dependencies through memory are to be
conservatively assumed as real dependencies  Loss of useful
reordering possibilities

 Goal: move loads as early as possible, even speculatively before
preceding stores (i.e., without being sure that the value is right)

<some code>
st [r3] = r4
// ------ barrier
ld r1 = [r2]
<some code using r1>

ld r1 = [r2] // load could be speculated…
<some code>
st [r3] = r4 // …but if r2==r3, r1 is WRONG!
// ------ barrier
<some code using r1>

NO!

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically98

Data Speculation (II)

 Speculative Loads get executed but mark the destination register as
“speculatively” loaded and track subsequent stores for a conflict

 Important advantage because loads (slow operations) can now be
started earlier

ld.a r1 = [r2] // speculative loads are normal
// but mark always the register
// with the additional NaT bit

<some code>
<some code using r1> // NaT is propagated in further

// calculations

st [r3] = r4 // successive stores are checked
// to see if they rewrite locations
// which were object of speculative
// loads

// ------ barrier
<some more code using r1>
chk.a r1, fix_code_r1 // if violated RAW dependence, call

// special fix-up routine

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically99

Application State — Registers

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically100

Register Model (I)
Stacked Registers

 Registers #0-31 are static (normal registers)
 Each procedure sees a fresh register set from #31

onwards (max 96)
 Special instruction

alloc <local-regs>, <out-regs>

 Declares max number of registers used in a procedure
and max number of registers passed to a called
procedure

alloc 8, 3

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically101

Register Model (I)
Stacked Registers

The calling
procedure has
8 local and 3

output
registers

After a call,
only the 3

output
registers are
visible to the
called routine

After an
alloc, the
old output

registers are
part of the

new 10 local
registers

After a return,
everything

goes back as
before the call

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically102

Register Model (I)
Stacked Registers

 Addresses the fact that parameter exchange through the
stack before and after a function call (arguments and
result) is very expensive if memory is a bottleneck (think
also of registers $a0-$a3 and $v0-$v1 in MIPS)

 The basic idea of is very similar to Register Windows in
the SPARC architecture but more flexible:
 SPARC has 128 registers R0-R127 but only 32 are visible at once
 r0-r7 = R0-R7 are Globals and always visible
 r8-r31 are a window (initially r31 = R127)

 r8-r15 = out,
 r16-r23 = locals, and
 r24-r31 = in

 At each CALL, the active window is moved down 16 registers so
that r8-r15 (outs of the previous procedure) become r24-r31 (ins
of the new procedure) and all other registers are fresh

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically103

Register Model (I)
Stacked Registers

What happens if one alloc’s more registers than
physically available?
 Number and type (# in/outs regs) of nested calls is dynamic!
 SPARC generates an exception
 In Itanium, a Register Stack Engine spills registers of outer

procedures (oldest in the stack)
 Asynchronous and autonomous spilling of the non-visible

registers in the background
 Can do spilling speculatively ahead of time
 Tries to use free Load/Store slots
 Reported effectiveness: removes 30% of Loads/Stores and

consumes only 5% of the execution slots
 One step further in dynamic speculative execution!

Weren’t VLIW “static” processors?!…

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically104

Register Model (II) — Rotating
Registers and Software Pipelining

Loop unrolling and Software Pipelining (see
before) are ways to achieve more ILP in small
loop bodies—but both have a number of
tangible limitations (e.g., larger code, limited
applicability)

Modulo Scheduling achieves the same
purpose more effectively
Rotating registers and Predicates are the

microarchitectural support needed to implement these
techniques

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically105

Reminder: SW Pipelining Example

Loop: LD $f0, ($r1)
ADDD $f4, $f0, $f2
SD ($r1), $f4

LD $f6, -8($r1)
ADDD $f8, $f6, $f2
SD -8($r1), $f8

LD $f10, -16($r1)
ADDD $f12, $f10, $f2
SD -16($r1), $f12

LD $f14, -24($r1)
ADDD $f16, $f14, $f2
SD -24($r1), $f16

LD $f18, -32($r1)
ADDD $f20, $f18, $f2
SD -32($r1), $f20

SUBI $r1, $r1, 40
BNEZ $r1, Loop

LOAD /Branch Unit STORE Unit ALU Floating-Point Unit

ld $f0, ($r1)

ld $f6, -8($r1)

ld $f0, -16($r1) addd $f4,$f0,$f2

ld $f6, -24($r1) addd $f8,$f6,$f2

ld $f0, -32($r1) addd $f12,$f0,$f2

ld $f6, -40($r1) sd 0($r1), $f4 addd $f4,$f10,$f2

ld $f10, -48($r1) sd -8($r1),$f8 addd $f8,$f14,$f2

ld $f14, -56($r1) sd -16($r1),$f12 subi $r1,$r1,24 addd $f12,$f6,$f2

bnez $r1, Loop

sd 0($r1), $f4 addd $f4,$f10,$f2

sd -8($r1), $f8 addd $f8,$f14,$f2

sd -16($r1),$f12

sd -24($r1), $f4

sd -32($r1), $f8

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically106

Modulo Scheduling

Goals:
Get rid of the Prologue and Epilogue  use the

loop Kernel instead
Minimize size of the Kernel
Automate/hide loop counting

Solution:
Architectural “renaming” across iterations 

Register Rotation
 Every new iteration r32r33, r33r34, r34r35, etc.

Special use of the predicates and loop
instructions to mask out instructions in the prologue
and epilogue

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically107

Software Pipelining Reminder:
Restructuring of the Loop Kernel

 Restructuring of
the loop kernel
from “vertical”
(sequential) to
“horizontal”
(parallel)

 Parallelism
among different
iterations

LD ADD1 ADD4

FMUL

FMUL

FMAC BR

LD ADD1 ADD4

FMAC BR FMUL FMUL

Scheduled:
9 cycles

Scheduled:
3 cycles

3 phases

Sheet1

		

																														LD		ADD1		ADD4

																														FMUL

		BR

																														FMUL

				LD		ADD1		ADD4

																														FMAC

				FMUL

										LD		ADD1		ADD4

				FMUL						FMUL

																LD		ADD1		ADD4

				FMAC						FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC						FMUL						FMUL

																												LD		ADD1		ADD4

																FMAC						FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC						FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC						FMUL						FMUL

																																														LD		ADD1		ADD4

																																		FMAC						FMUL						FMUL

																																								FMAC						FMUL

																																														FMAC

Sheet2

		

																														LD		ADD1		ADD4

																														FMUL

		BR

																														FMUL

																														FMAC

																LD		ADD1		ADD4

				FMAC						FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC						FMUL						FMUL

																												LD		ADD1		ADD4

																FMAC						FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC						FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC						FMUL						FMUL

																																														LD		ADD1		ADD4

																																		FMAC						FMUL						FMUL

																																																				LD		ADD1		ADD4

																																								FMAC						FMUL						FMUL

Sheet3

		

										LD		ADD1		ADD4

										FMUL

		BR																																								LD		ADD1		ADD4

										FMUL																				FMAC				BR		FMUL						FMUL

										FMAC				BR

																LD		ADD1		ADD4

				FMAC				BR		FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC				BR		FMUL						FMUL

																												LD		ADD1		ADD4

																FMAC				BR		FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC				BR		FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC				BR		FMUL						FMUL

																																														LD		ADD1		ADD4

																																		FMAC				BR		FMUL						FMUL

																																																				LD		ADD1		ADD4

																																								FMAC				BR		FMUL						FMUL

Sheet4

		

														LD		ADD1		ADD4

														FMUL

																																														LD		ADD1		ADD4

														FMUL																				FMAC				BR		FMUL						FMUL

														FMAC				BR

																LD		ADD1		ADD4																																								Prologue

				FMAC				BR		FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC				BR		FMUL						FMUL

																												LD		ADD1		ADD4																												Kernel

																FMAC				BR		FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC				BR		FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC				BR		FMUL						FMUL

																																														LD		ADD1		ADD4										Epilogue

																																		FMAC				BR		FMUL						FMUL

																																																				LD		ADD1		ADD4

																																								FMAC				BR		FMUL						FMUL

Sheet5

		

														LD		ADD1		ADD4

														FMUL

																																														LD		ADD1		ADD4

														FMUL																				FMAC				BR		FMUL						FMUL

														FMAC				BR

																LD		ADD1		ADD4																																								Prologue

				FMAC				BR		FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC				BR		FMUL						FMUL

																												LD		ADD1		ADD4																												Kernel

																FMAC				BR		FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC				BR		FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC				BR		FMUL						FMUL

																																														LD		ADD1		ADD4										Epilogue

																																		FMAC				BR		FMUL						FMUL

																																																				LD		ADD1		ADD4

																																								FMAC				BR		FMUL						FMUL

Sheet1

		

																														LD		ADD1		ADD4

																														FMUL

		BR

																														FMUL

				LD		ADD1		ADD4

																														FMAC

				FMUL

										LD		ADD1		ADD4

				FMUL						FMUL

																LD		ADD1		ADD4

				FMAC						FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC						FMUL						FMUL

																												LD		ADD1		ADD4

																FMAC						FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC						FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC						FMUL						FMUL

																																														LD		ADD1		ADD4

																																		FMAC						FMUL						FMUL

																																								FMAC						FMUL

																																														FMAC

Sheet2

		

																														LD		ADD1		ADD4

																														FMUL

		BR

																														FMUL

																														FMAC

																LD		ADD1		ADD4

				FMAC						FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC						FMUL						FMUL

																												LD		ADD1		ADD4

																FMAC						FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC						FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC						FMUL						FMUL

																																														LD		ADD1		ADD4

																																		FMAC						FMUL						FMUL

																																																				LD		ADD1		ADD4

																																								FMAC						FMUL						FMUL

Sheet3

		

										LD		ADD1		ADD4

										FMUL

		BR																																								LD		ADD1		ADD4

										FMUL																				FMAC				BR		FMUL						FMUL

										FMAC				BR

																LD		ADD1		ADD4

				FMAC				BR		FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC				BR		FMUL						FMUL

																												LD		ADD1		ADD4

																FMAC				BR		FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC				BR		FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC				BR		FMUL						FMUL

																																														LD		ADD1		ADD4

																																		FMAC				BR		FMUL						FMUL

																																																				LD		ADD1		ADD4

																																								FMAC				BR		FMUL						FMUL

Sheet4

		

														LD		ADD1		ADD4

														FMUL

																																														LD		ADD1		ADD4

														FMUL																				FMAC				BR		FMUL						FMUL

														FMAC				BR

																LD		ADD1		ADD4																																								Prologue

				FMAC				BR		FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC				BR		FMUL						FMUL

																												LD		ADD1		ADD4																												Kernel

																FMAC				BR		FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC				BR		FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC				BR		FMUL						FMUL

																																														LD		ADD1		ADD4										Epilogue

																																		FMAC				BR		FMUL						FMUL

																																																				LD		ADD1		ADD4

																																								FMAC				BR		FMUL						FMUL

Sheet5

		

														LD		ADD1		ADD4

														FMUL

																																														LD		ADD1		ADD4

														FMUL																				FMAC				BR		FMUL						FMUL

														FMAC				BR

																LD		ADD1		ADD4																																								Prologue

				FMAC				BR		FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC				BR		FMUL						FMUL

																												LD		ADD1		ADD4																												Kernel

																FMAC				BR		FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC				BR		FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC				BR		FMUL						FMUL

																																														LD		ADD1		ADD4										Epilogue

																																		FMAC				BR		FMUL						FMUL

																																																				LD		ADD1		ADD4

																																								FMAC				BR		FMUL						FMUL

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically108

Modulo Scheduling
LC

 =
 lo

op
 c

ou
nt

er
EC

LD ADD1 ADD4

FMAC BR FMUL FMUL

LD ADD1 ADD4

FMAC BR FMUL FMUL

LD ADD1 ADD4

FMAC BR FMUL FMUL

LD ADD1 ADD4

FMAC BR FMUL FMUL

LD ADD1 ADD4

FMAC BR FMUL FMUL

LD ADD1 ADD4

FMAC BR FMUL FMUL

LD ADD1 ADD4

FMAC BR FMUL FMUL

P
ro

lo
g

u
e

K
er

n
el

E
p

ilo
g

u
e

0

0

1

1

1

1

1

1

1 1

0 1

1 1

0 0

p3 p2 p1

1 1

1 0

1

Rotating Predicates

Suppressed phases
through predicates

Suppressed phases
through predicates

Sheet1

		

																														LD		ADD1		ADD4

																														FMUL

		BR

																														FMUL

				LD		ADD1		ADD4

																														FMAC

				FMUL

										LD		ADD1		ADD4

				FMUL						FMUL

																LD		ADD1		ADD4

				FMAC						FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC						FMUL						FMUL

																												LD		ADD1		ADD4

																FMAC						FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC						FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC						FMUL						FMUL

																																														LD		ADD1		ADD4

																																		FMAC						FMUL						FMUL

																																								FMAC						FMUL

																																														FMAC

Sheet2

		

																														LD		ADD1		ADD4

																														FMUL

		BR

																														FMUL

																														FMAC

																LD		ADD1		ADD4

				FMAC						FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC						FMUL						FMUL

																												LD		ADD1		ADD4

																FMAC						FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC						FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC						FMUL						FMUL

																																														LD		ADD1		ADD4

																																		FMAC						FMUL						FMUL

																																																				LD		ADD1		ADD4

																																								FMAC						FMUL						FMUL

Sheet3

		

										LD		ADD1		ADD4

										FMUL

		BR																																								LD		ADD1		ADD4

										FMUL																				FMAC				BR		FMUL						FMUL

										FMAC				BR

																LD		ADD1		ADD4

				FMAC				BR		FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC				BR		FMUL						FMUL

																												LD		ADD1		ADD4

																FMAC				BR		FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC				BR		FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC				BR		FMUL						FMUL

																																														LD		ADD1		ADD4

																																		FMAC				BR		FMUL						FMUL

																																																				LD		ADD1		ADD4

																																								FMAC				BR		FMUL						FMUL

Sheet4

		

														LD		ADD1		ADD4

														FMUL

																																														LD		ADD1		ADD4

														FMUL																				FMAC				BR		FMUL						FMUL

														FMAC				BR

																LD		ADD1		ADD4																																								Prologue

				FMAC				BR		FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC				BR		FMUL						FMUL

																												LD		ADD1		ADD4																												Kernel

																FMAC				BR		FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC				BR		FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC				BR		FMUL						FMUL

																																														LD		ADD1		ADD4										Epilogue

																																		FMAC				BR		FMUL						FMUL

																																																				LD		ADD1		ADD4

																																								FMAC				BR		FMUL						FMUL

Sheet5

		

														LD		ADD1		ADD4

														FMUL

																																														LD		ADD1		ADD4

														FMUL																				FMAC				BR		FMUL						FMUL

														FMAC				BR

																																																																p3		p2		p1

																LD		ADD1		ADD4																																								Prologue				0		0		1

				FMAC				BR		FMUL						FMUL

																						LD		ADD1		ADD4																																						0		1		1

										FMAC				BR		FMUL						FMUL

																												LD		ADD1		ADD4																												Kernel				1		1		1

																FMAC				BR		FMUL						FMUL

																																		LD		ADD1		ADD4																										1		1		1

																						FMAC				BR		FMUL						FMUL

																																								LD		ADD1		ADD4																				1		1		1

																												FMAC				BR		FMUL						FMUL

																																														LD		ADD1		ADD4										Epilogue				1		1		0

																																		FMAC				BR		FMUL						FMUL

																																																				LD		ADD1		ADD4								1		0		0

																																								FMAC				BR		FMUL						FMUL

Sheet1

		

																														LD		ADD1		ADD4

																														FMUL

		BR

																														FMUL

				LD		ADD1		ADD4

																														FMAC

				FMUL

										LD		ADD1		ADD4

				FMUL						FMUL

																LD		ADD1		ADD4

				FMAC						FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC						FMUL						FMUL

																												LD		ADD1		ADD4

																FMAC						FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC						FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC						FMUL						FMUL

																																														LD		ADD1		ADD4

																																		FMAC						FMUL						FMUL

																																								FMAC						FMUL

																																														FMAC

Sheet2

		

																														LD		ADD1		ADD4

																														FMUL

		BR

																														FMUL

																														FMAC

																LD		ADD1		ADD4

				FMAC						FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC						FMUL						FMUL

																												LD		ADD1		ADD4

																FMAC						FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC						FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC						FMUL						FMUL

																																														LD		ADD1		ADD4

																																		FMAC						FMUL						FMUL

																																																				LD		ADD1		ADD4

																																								FMAC						FMUL						FMUL

Sheet3

		

										LD		ADD1		ADD4

										FMUL

		BR																																								LD		ADD1		ADD4

										FMUL																				FMAC				BR		FMUL						FMUL

										FMAC				BR

																LD		ADD1		ADD4

				FMAC				BR		FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC				BR		FMUL						FMUL

																												LD		ADD1		ADD4

																FMAC				BR		FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC				BR		FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC				BR		FMUL						FMUL

																																														LD		ADD1		ADD4

																																		FMAC				BR		FMUL						FMUL

																																																				LD		ADD1		ADD4

																																								FMAC				BR		FMUL						FMUL

Sheet4

		

														LD		ADD1		ADD4

														FMUL

																																														LD		ADD1		ADD4

														FMUL																				FMAC				BR		FMUL						FMUL

														FMAC				BR

																LD		ADD1		ADD4																																								Prologue

				FMAC				BR		FMUL						FMUL

																						LD		ADD1		ADD4

										FMAC				BR		FMUL						FMUL

																												LD		ADD1		ADD4																												Kernel

																FMAC				BR		FMUL						FMUL

																																		LD		ADD1		ADD4

																						FMAC				BR		FMUL						FMUL

																																								LD		ADD1		ADD4

																												FMAC				BR		FMUL						FMUL

																																														LD		ADD1		ADD4										Epilogue

																																		FMAC				BR		FMUL						FMUL

																																																				LD		ADD1		ADD4

																																								FMAC				BR		FMUL						FMUL

Sheet5

		

														LD		ADD1		ADD4

														FMUL

																																														LD		ADD1		ADD4

														FMUL																				FMAC				BR		FMUL						FMUL

														FMAC				BR

																																																																p3		p2		p1

																LD		ADD1		ADD4																																								Prologue				0		0		1

				FMAC				BR		FMUL						FMUL

																						LD		ADD1		ADD4																																						0		1		1

										FMAC				BR		FMUL						FMUL

																												LD		ADD1		ADD4																												Kernel				1		1		1

																FMAC				BR		FMUL						FMUL

																																		LD		ADD1		ADD4																										1		1		1

																						FMAC				BR		FMUL						FMUL

																																								LD		ADD1		ADD4																				1		1		1

																												FMAC				BR		FMUL						FMUL

																																														LD		ADD1		ADD4										Epilogue				1		1		0

																																		FMAC				BR		FMUL						FMUL

																																																				LD		ADD1		ADD4								1		0		0

																																								FMAC				BR		FMUL						FMUL

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically109

Register Model (II) — Rotating
Registers and Loop-Type Branches

Special actions on:

 Loop Counter
 Count iterations

(prologue and
kernel)

 Epilogue Counter
 Count epilogue

iterations
 Predicates

 mask out epilogue
 Rotate all registers

(r32r33, r33r34,
etc.) incl. predicates

98 7-bit adders and 42 MUXes to implement RFs stacking and rotations

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically110

Example of Modulo Scheduling

 Add a constant to a vector

mov LC = 99 // LC = loop trip count – 1
mov EC = 4 // EC = epilogue stages + 1
mov pr.rot = 1 << 16 // p16 = 1, rest = 0

Loop: (p16) ld4 r32 = [r5], 4
(p18) add r35 = r34, r9
(p19) st4 [r6] = r36, 4
br.ctop Loop ;;

 Remarks:
 p16 to p19 in the loop: four phases in a single VLIW instruction
 Second phase empty
 ld4 has 2-cycle latency, hence r34 is the result of ld4
 add has 1-cycle latency, hence r36 is the result of add
 The immediate 4 in ld4 and st4 is post added to the memory pointer

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically111

Miscellaneous Features

Very large Virtual Memory Model
Support for 64-bit addresses = 16 billion GBytes

82-bit Floating Point support
32-bit Single Precision IEEE-754
64-bit Double Precision IEEE-754
80-bit Double-extended Precision IEEE-754

 Two additional bits to increase efficiency
2 x 32-bit Single Precision IEEE-754 (SIMD)

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically112

Itanium 2 Chip

 Second commercial
implementation of IA-64

 1GHz in a .18um CMOS 6M
process

 8-stage pipeline
 Issues up to 8 instructions per

cycle on 19 (?) execution units
 16Kb+16Kb L1 Data and

Instruction caches
 256Kb L2 unified cache
 3Mb L3 on-chip unified cache
 128-bit data bus, sustaining

400Mbit/s/pin  6.4 Gbit/s
 Huge die:

 400mm2

 221M transistors

So
ur

ce
: N

af
fz

ig
er

 e
t a

l.,
 ©

 IE
EE

 2
00

2

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically113

Itanium 2
Chip

So
ur

ce
: M

icr
op

ro
ce

ss
or

 R
ep

or
t,

©
 C

ah
ne

rs
20

02

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically114

Itanium 2 Processor Pipeline

So
ur

ce
: M

cN
ai

ry
 a

nd
 S

ol
tis

, ©
 IE

EE
20

03

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically115

Current
High-End

Processors

Source: Microprocessor Report, © Cahners 2009

It works!...
But if one compares

Itanium 2 and
1-core Xeon

(same technology),
Itanium 2 has slightly
better performance

(+30-50%)
at the price of

~6 times larger area
and

~10 times more
transistors...

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically116

But! Mutual Exclusion of Static and
Dynamic Scheduling? No…

Itanium (IA-64) code is EPIC—that is, it is
statically scheduled in 3-instruction 128-bit
bundles

Merced (2001) and McKinley (2002) issue in
order 2 bundles in parallel

The business importance of binary compatibility,
will possibly make future implementation
of IA-64 dynamically scheduled sometimes
in the (not-too-near?) future

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically117

Two Ways to ILP
Both Available in High-End Systems

Instructions

Cycles

VLIW

Pipelining

Standard

Dynamic Scheduling

Superscalar

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically118

Conclusions on Real VLIWs

“Fallacy: There is a simple approach to
multiple-issue processors that yields high

performance without a significant investment
in silicon area or design complexity”

Hennessy & Patterson, CA:AQA

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically119

VLIW Can Be Good for Embedded
Processors

Cost used to be the only concern; now
performance/cost is at premium and still not
performance alone as in PCs (Intel model);
performance is often a constraint

Binary compatibility is less of an issue for
embedded systems

Many embedded applications have an obvious
parallelism

Manual optimizations are possible (tune compiler
switches, annotate code with pragmas, etc.)

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically120

Dual Cluster DSPs
TI DSP TMS320C64x

So
ur

ce
: M

icr
op

ro
ce

ss
or

 R
ep

or
t,

©
 M

PR
 2

00
0

Qualcomm Hexagon v5 DSP

© Ienne 2006-25AdvCompArch — Exploiting ILP Statically121

So
ur

ce
: M

icr
op

ro
ce

ss
or

 R
ep

or
t,

©
 M

PR
 2

01
3

In Qualcomm Snapdragon since 2006

Meteor Lake AI Accelerator (NPU)

© Ienne 2006-25AdvCompArch — Exploiting ILP Statically122

Even inside
Intel PC processors

one can find
AI accelerators
that use VLIWs

So
ur

ce
: M

icr
op

ro
ce

ss
or

 R
ep

or
t,

©
 T

ec
hI

ns
ig

ht
s

20
23

Google’s TensorCore is a VLIW
Groq’s LPU is a huge statically scheduled chip
etc.

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically123

References on VLIW

 AQA 5th ed., Appendix H
 B. R. Rau and J. A. Fisher, Instruction-Level Parallel

Processing: History, Overview, and Perspective, The
Journal of Supercomputing, vol. 7, p. 9-50, 1993

 M. S. Schlansker et al., Achieving High Levels of
Instruction-Level Parallelism with Reduced Hardware
Complexity, HP Labs Technical Report HPL-96-120,
November 1994

© Ienne 2006-22AdvCompArch — Exploiting ILP Statically124

References on IA-64 and Itanium

 C. McNairy and D. Soltis, Itanium 2 Processor
Microarchitecture, IEEE Micro, Mar./Apr. 2003

 S. D. Naffziger et al., The Implementation of the Itanium
2 Microprocessor, IEEE JSSC, November 2002

 K. Krewell, Itanium 2 Arrives with a Benchmarking Bang,
MPR, August 2002

 J. Huck et al., Introducing the IA-64 Architecture, IEEE
Micro, Sept./Oct. 2000

 H. Sharangpani and K. Arora, Itanium Processor
Microarchitecture, IEEE Micro, Sept./Oct. 2000

 J. Bharadwaj, The Intel IA-64 Compiler Code Generator,
IEEE Micro, Sept./Oct. 2000

	Advanced Computer Architecture�—�Part I: General Purpose�Exploiting ILP Statically
	1
	Very Long Instruction Word:�An Alternate Way of Extracting ILP
	Sequential  Pipelined  Multiple Issue
	3 Requirements to Obtain CPI < 1
	(Dynamically Scheduled) Superscalar Processor
	Run Time vs. Compiler Time�Scheduling
	Dynamic Scheduler
	Dynamic Scheduler
	(Statically Scheduled) Very Long Instruction Word Processor
	How to exploit Instruction Level Parallelism
	Traditional Code vs. VLIW Code
	VLIW Main Advantage: �Low Hardware Complexity
	A Different Split between Software and Hardware
	A Different Split between Software and Hardware
	Challenges of VLIW
	2
	Larger Code Is a Serious Problem
	Code Compression: Differentiate Fetch Packet and Execute Packet
	Typical VLIW Code Compression
	Code Bloating Solved?
	3
	NUAL Semantics Assumes More…
	VLIW Binary Is Incompatible with More Aggressive Implementations
	VLIW Binary Incompatibility
	Problem #1�Latency Cannot Increase
	Why Latency Could Ever Increase?
	Problem #2�Latency Cannot Decrease Either!
	4
	Typical Code May Have Limited ILP
	Typical Code May Have Limited ILP
	Fighting Dependencies
	Overcoming Control Dependencies: Predicated Execution
	Predicated Execution
	Predicated Execution Needs Architectural Support
	Predicated Execution Makes Basic Blocks Larger
	Predication Support �Can Be Partial or Full
	Predication�without Architectural Support…
	Predication�without Architectural Support…
	Overcoming Control Dependencies: Loop Transformations
	Loop Peeling
	Loop Fusion
	Loop Distribution
	Creating Larger Loop Bodies:�Loop Unrolling
	Example of Loop Unrolling
	Before Unrolling
	Loop Unrolling Idea
	Unrolled and Rescheduled
	No Architectural Extension Required (So Far…)
	VLIW Code Bloating Revisited…
	Beyond Loop Unrolling:�Software Pipelining
	Software Pipelining
	Software Pipelining Idea
	Software Pipelining�Prologue, Body, and Epilogue
	SW Pipelining Example
	Again, Unroll the Loop
	Unrolled Loop Schedule
	Identify the Regular Kernel
	Modified SW Pipelining Example�(All Unit Latencies)
	Why “SW Pipelining”?
	Overcoming Nonloop Control Dependences: Trace Scheduling
	Register Renaming as a Way to Compensate
	Trace Scheduling
	What Is Trace Scheduling?�Static Speculation
	Run Time vs. Compile Time�Speculation
	Compile Time Speculation
	Architectural Needs for �Run- vs. Compile-Time Speculation
	Compensation Code
	No Compensation
	Join Compensation
	Split Compensation
	Join/Split Compensation
	Region- (e.g., Trace-) Scheduling Is Iterative
	Beyond Trace Scheduling: �Superblock Scheduling
	Superblock Formation
	Fighting Dependencies
	Dependencies: �RAW, WAR, and WAW
	Eliminating WAW and WAR at Compile Time
	RAW Dependencies Are Hard to Eliminate
	Data Dependencies in Memory:�Is There a Dependency?
	Example of Information Missing at Compile Time? But…
	Memory Disambiguation at �Compile Time
	Memory Disambiguation at �Compile Time
	ILP Compilation Techniques
	Conclusions on VLIW Compilers
	5
	What is IA-64? What is Itanium?
	EPIC 128-bit Instruction Bundles
	Bundles�Fetch and Execution Packets
	Predication (I)
	Predication (II)
	Compound AND/OR for Predication
	Multiway Branches Through Predication
	Balance Between Static and Dynamic Branch Prediction
	Control Speculation (I)
	Control Speculation (II)
	Data Speculation (I)
	Data Speculation (II)
	Application State — Registers
	Register Model (I)�Stacked Registers
	Register Model (I)�Stacked Registers
	Register Model (I)�Stacked Registers
	Register Model (I)�Stacked Registers
	Register Model (II) — Rotating Registers and Software Pipelining
	Reminder: SW Pipelining Example
	Modulo Scheduling
	Software Pipelining Reminder: �Restructuring of the Loop Kernel
	Modulo Scheduling
	Register Model (II) — Rotating Registers and Loop-Type Branches
	Example of Modulo Scheduling
	Miscellaneous Features
	Itanium 2 Chip
	Itanium 2�Chip
	Itanium 2 Processor Pipeline
	Current �High-End �Processors
	But! Mutual Exclusion of Static and Dynamic Scheduling? No…
	Two Ways to ILP�Both Available in High-End Systems
	Conclusions on Real VLIWs
	VLIW Can Be Good for Embedded Processors
	Dual Cluster DSPs�TI DSP TMS320C64x
	Qualcomm Hexagon v5 DSP
	Meteor Lake AI Accelerator (NPU)
	References on VLIW
	References on IA-64 and Itanium

