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VLIW and EPIC? Another Way to ILP

(What if I Now Threw It All Away?!…)
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Very Long Instruction Word:
An Alternate Way of Extracting ILP

Instructions

Cycles

VLIW

Pipelining

Standard
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Sequential  Pipelined  Multiple Issue

time

ideal CPI < 1

time

ideal CPI = n

time

ideal CPI = 1
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3 Requirements to Obtain CPI < 1

1. Machine parallelism
The machine is equipped with multiple datapaths 
(pipelines)

2. Application parallelism
The application program has inherent parallelism 
that can be exploited

3. Compiler “cleverness”
The compiler needs to discover the application 
parallelism and expose it to the machine
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(Dynamically Scheduled) 
Superscalar Processor

Dynamic 
Scheduling:

What each unit 
does in each cycle 

is decided at 
execution time in 

hardware

Instruction Memory

FP UnitALU 1Register Files Branch
Unit

Load/Store
UnitALU 2

Dynamic Scheduler

1234:
1235:
1236:
1237:
1238: 32-64 bits

Reservation Stations, 
Scoreboard, etc.
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Run Time vs. Compiler Time
Scheduling

What does it mean to schedule?
It means to decide WHEN and WHERE each 

instruction is executed
Scheduling happens at run time in superscalars 

and it happens exclusively at compile time in 
VLIWs

Run time scheduling in superscalars requires 
considerable resources in the processor hardware
Reservation stations and reorder buffer
Renaming registers and various sorts of mapping 

tables
Etc.
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Dynamic Scheduler

Large amount of logic, significant area cost
PowerPC 750 Instruction Sequencer is approx. 70% 

of the area all execution units! (Integer units + Load/ 
Store units + FP unit) 

Cycle time limited by scheduling logic
Design verification extremely complex
Design-for-Testability (DFT) complex
Very complex irregular logic
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Dynamic Scheduler

 Scheduling complexity (e.g., checking dependences) 
is typically of the order of the square in the issue rate
(R)

 Strong limit to ILP exploitation

In-flight Instructions (kR)
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(Statically Scheduled) Very Long 
Instruction Word Processor

Static 
Scheduling:

What each unit 
does in each cycle 

is decided at 
compile time in 

software

FP UnitALU 1Register Files Branch
Unit

Load/Store
UnitALU 2

1234:
1235:
1236:
1237:
1238:

128-512 bitsInstruction Memory
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How to exploit Instruction Level 
Parallelism

Superscalar Processor
Hardware detects parallelism among instructions
Scheduling is first performed at compile time, but 

with very loose information on the architecture the 
program will be run on

Final scheduling is performed at run time

VLIW (or EPIC) Processor
Software detects parallelism among instructions
Scheduling is performed at compile time
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Traditional Code vs. VLIW Code

op 1
op 2
op 3
op 4
op 5
op 6

op 1 op 6

op 2
op 5

op 7
op 3

op 12

op 8

NOP
op 4NOPNOP

NOP
NOP
NOP
NOP

NOP

NOP NOP
NOP
op 17
op 16

NOP
NOP

1000:
1001:
1002:
1003:
1004:
1005:

1000:
1001:
1002:
1003:
1004:
1005:

VLIWTraditional

cycles = instructionscycles != instructions
latency-independent 

semantics
(Unit-Assumed Latency)

latency-dependent 
semantics

(Non Unit-Assumed Latency)
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VLIW Main Advantage: 
Low Hardware Complexity

Area Advantage: No need for the 
hardware used in superscalars for dynamic 
dependence analysis  more execution 
units

Timing Advantage: No need for 
complex dependence analysis every cycle 
 clock frequency can be higher
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A Different Split between Software 
and Hardware

Dependency
Analysis

Program

Front-End
Optimisation

Resource
Allocation

(Scheduling)

Dependency
Analysis

Resource
Allocation

(Scheduling)

Execution

Compiler
(software,

static)

Processor
(hardware,
dynamic)

VLIW/EPIC

Superscalar
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A Different Split between Software 
and Hardware

…
Loop: ld     $f0, ($r1)

addd   $f4, $f0, $f2
sd     ($r1), $f4
subi   $r1, $r1, 8
bnez   $r1, Loop
…

…
Loop: ld     $f0, ($r1)

addd   $f4, $f0, $f2
sd     ($r1), $f4
ld     $f6, ($r1-8)
addd   $f8, $f6, $f2
sd     ($r1-8), $f8
ld     $f10, ($r1-16)
addd   $f12, $f10, $f2
sd     ($r1-16), $f12
ld     $f14, ($r1-24)
addd   $f16, $f14, $f2
sd     ($r1-24), $f16
ld     $f18, ($r1-32)
addd   $f20, $f18, $f2
sd     ($r1-32), $f20
subi   $r1, $r1, 40
bnez   $r1, Loop
…

…
Loop: ld     $f0, ($r1)

ld     $f6, ($r1)
ld     $f10, ($r1)        addd   $f4, $f0, $f2
ld     $f14, ($r1)        addd   $f8, $f6, $f2
ld     $f18, ($r1)        addd   $f12, $f10, $f2
sd     ($r1), $f4         addd   $f16, $f14, $f2
sd     ($r1-8), $f8       addd   $f20, $f18, $f2
sd     ($r1-16), $f12
sd     ($r1-24), $f16
sd     ($r1-32), $f20
subi   $r1, $r1, 40
bnez   $r1, Loop
…

SW
(= Complier)

Source code available
(higher level information)
Global analysis possible
(variable lifecycle, etc.)

HW
(= Instruction Scheduler)

Run-time information available
(actual data, addresses, pointers, etc.)

VLIW
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Challenges of VLIW

 Compiler Technology
 Compiler now responsible for scheduling
 Most severe limitation until recently (VLIW idea is 

around since the 70s!)
 Binary Incompatibility
 Consequence of the larger exposure of the 

microarchitecture (= implementation choices) in the 
architecture (e.g., NUAL semantics)

 Code Bloating
 All those NOPs occupy memory space and thus cost
 But there are also other reasons!…



2
The Code Bloating Problem

(Memory Is Not That Cheap—and More…)
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 In a first approximation, the problem is due to the 
explicit NOPs

 Not just a DRAM cost issue (main memory is cheap…), 
but has weird impacts on cache performance (size, cache 
pollution, associativity, etc.)

Larger Code Is a Serious Problem

op 1 op 6

op 2
op 5

op 7
op 3

op 12

op 8

NOP
op 4NOPNOP

NOP
NOP
NOP
NOP

NOP

NOP NOP
NOP
op 17
op 16

NOP
NOP

1000:
1001:
1002:
1003:
1004:
1005:
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Code Compression: Differentiate 
Fetch Packet and Execute Packet

D1
A1

C0
C1

A0
B1

B
A0

1

load nop add2 muld
nop add1 nop nop

nop nop nop
store sub nop nop

add3

add1 load add2 muld
store sub add3 nop

nop nop nopnop

Separator
(1 = last instruction of a VLIW) Execution Unit

Compressed
Fetch Packets in 

memory

Uncompressed
Execute Packets
for the processor

(classic VLIW code)

A B C D
crossbar
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Typical VLIW Code Compression

Instructions are encoded in a less 
straightforward way
Separator bit = 0: next operation is in parallel
Separator bit = 1: next operation is sequential
Unit number: specifies where to execute operation

Price to pay for shorter code:
Fetch/Decode logic more complex
Crossbar for shipping operations to the right FU, 

complexity proportional to n2

Hardware was supposed to be trivial and O(n)…
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Code Bloating Solved?

A trivial but significant reason for bloating 
is removed
More fundamental and difficult to 

overcome reasons exist which still 
increase significantly the code size
See later…



3
The Binary Compatibility Problem

(Not everybody likes—or can—recompile…)
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NUAL Semantics Assumes More…

op 1 op 6

op 2
op 5

op 7
op 3

op 12

op 8

NOP
op 4NOPNOP

NOP
NOP
NOP
NOP

NOP

NOP NOP
NOP
op 17
op 16

NOP
NOP

1000:
1001:
1002:
1003:
1004:
1005:

cycles = instructions
latency-dependent 

semantics
(Non Unit-Assumed Latency)

More information is now implicit in the code:
1. Instruction latencies—used to enforce correct handling of data 

dependencies
2. Available hardware parallelism—units scheduled on each cycle
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VLIW Binary Is Incompatible with 
More Aggressive Implementations

FP UnitALU 1 Branch
Unit

Load/Store
UnitALU 2

Dynamic Scheduler

FP Unit 2ALU 3

Traditional Code

FP UnitALU 1 Branch
Unit

Load/Store
UnitALU 2 FP Unit 2ALU 3

VLIW Code

???
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VLIW Binary Incompatibility

More subtle sources of incompatibility
Changes in instruction latencies—e.g., load 

latencies increases (logic-memory gap)
No fully satisfactory solution exists today
Partial or research solutions:
Recompile (possible in some kind of 

systems—not for consumer PC market…)
Special VLIW coding/restrictions
Dynamic Binary Translation is emerging—see 

future course
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Problem #1
Latency Cannot Increase

op 1 op 6

op 2
op 5

op 7
op 3

op 12

op 8

NOP
op 4NOPNOP

NOP
NOP
NOP
NOP

NOP

NOP NOP
NOP
op 17
op 16

NOP
NOP

1000:
1001:
1002:
1003:
1004:
1005:

cycles = instructions
latency-dependent 

semantics
(Non Unit-Assumed Latency)

Trivially, higher latency may violate data dependencies
 E.g., the operands of “op 2” are no longer available if the 

latency of “op 1” increases.
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Why Latency Could Ever Increase?

Latency can sometimes increase in next 
generation machines:
E.g. memory / logic growing gap

load  R2,(R5)

add   R3,R3,R2

LOAD

ADD

1 cycle, 
25 ns

LOAD

ADD

1 cycle, 
15 ns

Previous 
gen.

Next 
gen.

load: 1 cycle

0

1

 2 cycles
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Problem #2
Latency Cannot Decrease Either! 

WB

a=b/3e=e+f
c=e+4
d=c*2

b=a+2

a = b / 3;
b = a + 2;
e = e + f;
c = e + 4;
d = c * 2;

If division takes 3 cycles, and addition takes 1 cycle…

If, in the next generation, division takes 
only 2 cycles  wrong result!

Values c and a can be assigned to the same physical 
register in this schedule (a is dead while c is alive)



4
The Compiler Problem

(Not Just a New Compiler…)
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Typical Code May Have Limited ILP

 Example:
Loop: ld     $f0, ($r1) // read array elem.

addd   $f4, $f0, $f2 // add constant
sd     ($r1), $f4 // write array elem.

subi   $r1, $r1, 8 // next element
bnez   $r1, Loop

 Schedule on a VLIW processor
 Slot 1: Load/Store Unit or Branch Unit
 Slot 2: ALU
 Slot 3: Floating-Point Unit

 Latencies:
 Load/Store  2 cycles
 Integer  2 cycles
 Branch  2 cycles
 Floating Point  3 cycles



© Ienne 2006-22AdvCompArch — Exploiting ILP Statically31

Typical Code May Have Limited ILP

 Scheduled VLIW code:

 Execution time for $r1 = 80:
 80 / 8 = 10 iterations; 9 cycles per iteration  90 cycles

Load/Store/Branch Unit ALU Floating-Point Unit
ld $f0, ($r1) nop nop Cycle 1
nop nop nop Cycle 2
nop nop addd $f4, $f0, $f2 Cycle 3
nop nop nop Cycle 4
nop nop nop Cycle 5
sd ($r1), $f4 subi $r1, $r1, 8 nop Cycle 6
nop nop nop Cycle 7
bnez $r1, Loop nop nop Cycle 8
nop nop nop Cycle 9
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Fighting Dependencies

Parallel execution is limited by the need to find 
independent instructions

We need to deal with both data and control
dependencies

Data: 
a=b+c;
d=a+d;

Control: 
if (a==b)

d=c+d; exit
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Overcoming Control Dependencies: 
Predicated Execution

If
We have abundant resources (machine 

parallelism), and
We do not care about power dissipation, etc. 

but just look for performance
We can execute all paths in parallel 

without making a choice
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Predicated Execution

Remove branches via If Conversion:
if (a==b) c=2*d   else   c=3*d

becomes
P1 = (a==b)  
(P1) c=2*d (!P1) c=3*d

Introduce predicate P1 (outcome of jump)
Instructions can now be all executed in 

parallel, but they are committed only if the 
relative predicate is true
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Predicated Execution Needs 
Architectural Support

We need:

1. An instruction (     ) to 
set the predicate 

2. Predicate registers
3. An additional field in the 

instruction word
4. A way to check and 

delay exceptions

P1           !P1

P2        !P2



© Ienne 2006-22AdvCompArch — Exploiting ILP Statically36

Predicated Execution Makes Basic 
Blocks Larger

P1           !P1

P2        !P2



© Ienne 2006-22AdvCompArch — Exploiting ILP Statically37

Predication Support 
Can Be Partial or Full

Full: all instructions can be executed 
conditionally
ARM (on the flags)
IA-64/Itanium (on predicate registers)

Partial: typically a single conditional 
instruction
STMicroelectronics ST2xx: Select instruction
Alpha: Conditional Move instruction
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Predication
without Architectural Support…

/* an excerpt from g72x.c */
/* g721encoder, mediabench */

anmant = (anmag == 0) ? 32:
(anexp >= 0) ? anmag >> anexp: anmag << -anexp;

/* an excerpt from predicated g72x.c */
/* g721encoder, mediabench */

p2 = -(anmag == 0); p3 = -(anexp >= 0);
anmant = (32 & p2) | ((anmag >> anexp) & ~p2 & p3) |

((anmag << -anexp) & ~p2 & ~p3);

Before…

After…
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Predication
without Architectural Support…

 Suppose that
 Branches are very poorly predictable (p = 0.5)
 Branches costs 1 or 5 cycles (taken/untaken)
 Tests and other ALU ops cost 1 cycle
 There are several ALUs available (e.g., 3)

 Trace of normal program is
 Test  Branch  (Move || Test  Branch  Shift)
 On average 1 + (1+5)/2 + ½ + (1 + (1+5)/2 + 1)/2 = ~7 cycles

 Trace of modified program is
 2 Tests  2 Negs  2 Nots  2 Shifts, 5 Ands, 3 Ors
 Ideally some 16/3 = ~5-6 cycles

 Predication could in special cases be also a programming trick
for normal processors not supporting it in hardware!…
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Overcoming Control Dependencies: 
Loop Transformations

Loops are often the most important part 
of code (in terms of fraction of total time)
Loops bodies can be transformed so that 

more parallelism can be exploited
Loop peeling
Loop fusion
Loop distribution
Loop unrolling
Software pipelining, etc.



© Ienne 2006-22AdvCompArch — Exploiting ILP Statically41

Loop Peeling

101

102
102 times

100 times
for (i=0;i<102;i++)

a[i]=a[i-1]+c; 

for (i=0;i<100;i++)
a[i]=a[i-1]+c;

a[100]=a[99]+c;
a[101]=a[100]+c;Used with fusion (next slide) 

to increase ILP
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Loop Fusion

101

102

102

100 100

100
101

102

100

for (i=0;i<102;i++)
b[i]=b[i-2]+c;

for (j=0;j<100;j++)
a[j]=a[j]*2;

for (i=0;i<100;i++) {
b[i]=b[i-2]+c;
a[i]=a[i]*2;}

a[100]=a[100]*2;
a[101]=a[101]*2;Now a and b can be computed in 

parallel
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Loop Distribution

100

100

100

for (i=0;i<100;i++) {
b[i]=b[i-1]+c;
a[i]=b[i]+2;}

for (i=0;i<100;i++)
b[i]=b[i-1]+c;

for (i=0;i<100;i++)
a[i]=b[i]+2;

Now the second loop can be 
unrolled and parallelised
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Creating Larger Loop Bodies:
Loop Unrolling

i+1i

i

i+2

i+3
i++

for (i=0;i<100;i++)
a[i]=a[i]+c; 

for (i=0;i<100;i=i+4) {
a[i]=a[i]+c;
a[i+1]=a[i+1]+c;
a[i+2]=a[i+2]+c;
a[i+3]=a[i+3]+c;}

i=i+4

4 times less jumps and more 
scope for ILP (larger basic block)
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Example of Loop Unrolling

 Example:
Loop: ld     $f0, ($r1) // read array elem.

addd   $f4, $f0, $f2 // add constant
sd     ($r1), $f4 // write array elem.

subi   $r1, $r1, 8 // next element
bnez   $r1, Loop

 Schedule on a VLIW processor
 Slot 1: Load/Store Unit or Branch Unit
 Slot 2: ALU
 Slot 3: Floating-Point Unit

 Latencies:
 Load/Store  2 cycles
 Integer  2 cycles
 Branch  2 cycles
 Floating Point  3 cycles
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Before Unrolling

 Scheduled VLIW code:

 Execution time for $r1 = 80:
 80 / 8 = 10 iterations; 9 cycles per iteration  90 cycles

Load/Store/Branch Unit ALU Floating-Point Unit
ld $f0, ($r1) nop nop Cycle 1
nop nop nop Cycle 2
nop nop addd $f4, $f0, $f2 Cycle 3
nop nop nop Cycle 4
nop nop nop Cycle 5
sd ($r1), $f4 subi $r1, $r1, 8 nop Cycle 6
nop nop nop Cycle 7
bnez $r1, Loop nop nop Cycle 8
nop nop nop Cycle 9



© Ienne 2006-22AdvCompArch — Exploiting ILP Statically47

Loop Unrolling Idea

Loop: ld     $f0, ($r1)
addd   $f4, $f0, $f2
sd     ($r1), $f4

subi   $r1, $r1, 8
bnez   $r1, Loop

Loop: ld     $f0, ($r1)
addd   $f4, $f0, $f2
sd     ($r1), $f4

ld     $f6, -8($r1)
addd   $f8, $f6, $f2
sd -8($r1), $f8

ld     $f10, -16($r1)
addd   $f12, $f10, $f2
sd -16($r1), $f12

ld     $f14, -24($r1)
addd   $f16, $f14, $f2
sd -24($r1), $f16

ld     $f18, -32($r1)
addd   $f20, $f18, $f2
sd -32($r1), $f20

subi   $r1, $r1, 40
bnez   $r1, Loop

• Replicate body
• Update references
• Rename registers
• etc.
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Unrolled and Rescheduled

 Now 80 / (5*8) = 2 iterations; 13 cycles per iteration 
26 cycles (vs. 90 cycles, more than 3x faster!)

Load/Store/Branch Unit ALU Floating-Point Unit
ld $f0, ($r1) nop nop Cycle 1
ld $f6, -8($r1) nop nop Cycle 2
ld $f10, -16($r1) nop addd $f4, $f0, $f2 Cycle 3
ld $f14, -24($r1) nop addd $f8, $f6, $f2 Cycle 4
ld $f18, -32($r1) nop addd $f12, $f10, $f2 Cycle 5
sd ($r1), $f4 nop addd $f16, $f14, $f2 Cycle 6
sd -8($r1), $f8 nop addd $f20, $f18, $f2 Cycle 7
sd -16($r1), $f12 nop nop Cycle 8
sd -24($r1), $f16 nop nop Cycle 9
sd -32($r1), $f20 subi $r1, $r1, 40 nop Cycle 10
nop nop nop Cycle 11
bnez $r1, Loop nop nop Cycle 12
nop nop nop Cycle 13
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No Architectural Extension 
Required (So Far…)

Some techniques seen here require architectural 
extensions
Predication
Branch prediction
…

Others do not
Basic loop transformations (peeling, fusion,…)
Loop unrolling
…

Yet, they may have an indirect impact on 
architectural needs—e.g., more registers
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VLIW Code Bloating Revisited…

 VLIW code fundamentally larger than standard code: not only NOPs 
are explicit, but aggressive unrolling multiplies real instructions

 Compare last example: 39 words vs. 5! more than 50% are NOPs!

ld $f0, ($r1) nop nop

ld $f6, -8($r1) nop nop

ld $f10, -16($r1) nop addd $f4, $f0, $f2

ld $f14, -24($r1) nop addd $f8, $f6, $f2

ld $f18, -32($r1) nop addd $f12, $f10, $f2

sd ($r1), $f4 nop addd $f16, $f14, $f2

sd -8($r1), $f8 nop addd $f20, $f18, $f2

sd -16($r1), $f12 nop nop

sd -24($r1), $f16 nop nop

sd -32($r1), $f20 subi $r1, $r1, 40 nop

nop nop nop

bnez $r1, Loop nop nop

nop nop nop

ld $f0, ($r1)

addd $f4, $f0, $f2

sd ($r1), $f4

subi $r1, $r1, 8

bnez $r1, Loop
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Beyond Loop Unrolling:
Software Pipelining

Restructure the body of the loop so that 
more parallelism can be extracted
Put different tasks from different iterations 

in the same iteration (to exploit ILP)

BUT: Do not increase code size
(as loop unrolling does)
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Software Pipelining

Consider the following simple C code snippet:

The three corresponding instructions are 
dependent, they cannot be executed in parallel

Goal: restructure the loop, so that some ILP 
can be exploited

load a[i] 

add a[i], #1 

store c[i]

for (i=0, i<7, i++) {

c[i] = a[i]+1;

}
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5 

3 
4 

6 
7 

original loop

Software Pipelining Idea

2 
iterat. 1 

2 

5 

3 
4 

iterat. 1 

new loop
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Software Pipelining
Prologue, Body, and Epilogue

2 

5 

3 
4 

iterat. 1 

6 
7 

original loop

2 

5 

3 
4 

iterat. 1 

new loop

PROLOGUE
load a[1] 
add a[1], #1 
load a[2]

store c[i]
add a[i+1], #1 

load a[i+2]

EPILOGUE
store c[6]
add a[7], #1 
store c[7]
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SW Pipelining Example

 Same example:
Loop: ld     $f0, ($r1) // read array elem.

addd   $f4, $f0, $f2 // add constant
sd     ($r1), $f4 // write array elem.

subi   $r1, $r1, 8 // next element
bnez   $r1, Loop

 Schedule on a VLIW processor
 Slot 1 and 2: Load/Store Unit or Branch Unit
 Slot 3: ALU
 Slot 4: Floating-Point Unit

 Latencies:
 Load/Store  2 cycles
 Integer  2 cycles
 Branch  2 cycles
 Floating Point  3 cycles
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Again, Unroll the Loop

Loop: ld     $f0, ($r1)
addd   $f4, $f0, $f2
sd     ($r1), $f4

subi   $r1, $r1, 8
bnez   $r1, Loop

Loop: ld     $f0, ($r1)
addd   $f4, $f0, $f2
sd     ($r1), $f4

ld     $f6, -8($r1)
addd   $f8, $f6, $f2
sd -8($r1), $f8

ld     $f10, -16($r1)
addd   $f12, $f10, $f2
sd -16($r1), $f12

ld     $f14, -24($r1)
addd   $f16, $f14, $f2
sd -24($r1), $f16

ld     $f18, -32($r1)
addd   $f20, $f18, $f2
sd -32($r1), $f20

subi   $r1, $r1, 40
bnez   $r1, Loop

• Replicate body
• Update references
• Rename registers
• etc.
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Unrolled Loop Schedule

LOAD Unit STORE Unit ALU Floating-Point 
Unit

LD #0 Cycle 1
LD #1 Cycle 2
LD #2 ADDD #0 Cycle 3
LD #3 ADDD #1 Cycle 4
LD #4 ADDD #2 Cycle 5
LD #5 SD #0 ADDD #3 Cycle 6
LD #6 SD #1 ADDD #4 Cycle 7
LD #7 SD #2 ADDD #5 Cycle 8

SD #3 ADDD #6 Cycle 9
SD #4 ADDD #7 Cycle 10
SD #5 Cycle 11
SD #6 Cycle 12
SD #7 Cycle 13
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Identify the Regular Kernel

Loop: LD $f0, ($r1)
ADDD $f4, $f0, $f2
SD ($r1), $f4

LD $f6, -8($r1)
ADDD $f8, $f6, $f2
SD -8($r1), $f8

LD $f10, -16($r1)
ADDD $f12, $f10, $f2
SD -16($r1), $f12

LD $f14, -24($r1)
ADDD $f16, $f14, $f2
SD -24($r1), $f16

LD $f18, -32($r1)
ADDD $f20, $f18, $f2
SD -32($r1), $f20

SUBI $r1, $r1, 40
BNEZ $r1, Loop

LOAD /Branch Unit STORE Unit ALU Floating-Point Unit

ld $f0, ($r1)

ld $f6, -8($r1)

ld $f0, -16($r1) addd $f4,$f0,$f2

ld $f6, -24($r1) addd $f8,$f6,$f2

ld $f0, -32($r1) addd $f12,$f0,$f2

ld $f6, -40($r1) sd 0($r1), $f4 addd $f4,$f10,$f2

ld $f10, -48($r1) sd -8($r1), $f8 addd $f8,$f14,$f2

ld $f14, -56($r1) sd -16($r1), $f12 subi $r1,$r1,24 addd $f12,$f6,$f2

bnez $r1, Loop

sd 0($r1), $f4 addd $f4,$f10,$f2

sd -8($r1), $f8 addd $f8,$f14,$f2

sd -16($r1), $f12

sd -24($r1), $f4

sd -32($r1), $f8
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Modified SW Pipelining Example
(All Unit Latencies)

LOAD /Branch Unit
(latency ONE)

STORE Unit 
(latency ONE)

ALU
(latency ONE)

Floating-Point Unit
(latency ONE)

ld $f0, ($r1)

ld $f0, -8($r1) addd $f4,$f0,$f2

ld $f0, -16($r1) sd 0($r1), $f4 subi $r1,$r1,8 addd $f4,$f0,$f2

bnez $r1, Loop

sd 0($r1), $f4 addd $f4,$f0,$f2

sd -8($r1), $f4
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Why “SW Pipelining”?

Fetch (i+2)
Decode (i+1)
Execute (i)

Instructions
advancing in 

parallel

HW pipelining

Load (i+2)
Add (i+1)
Store (i)

Iterations
advancing in 

parallel

SW pipelining
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Overcoming Nonloop Control 
Dependences: Trace Scheduling

 Early technique: published by Fisher in 1981
 Optimise the most probable path by increasing the size of basic 

blocks ( more chances to find ILP)
 Add compensation code in less probable paths
 Beyond basic blocks: region-based scheduling

X=X+5

95% 5%

X=X+5

X=X-5

95% 5%

This block is 
now larger!

compensation 
code
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Register Renaming as a Way to 
Compensate

 Register renaming ensures that semantics is correct in 
every trace

 But, again, we need more registers…

a=g(i)

i=f(…)

95% 5%
i1=f(…)

a=g(i1)

i1=i

95% 5%

compensation 
code
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Trace Scheduling

1 4

2 3

5

1
2

3

Most probable trace 
will be optimised

2

5

4

3

All possible (but less probable) 
traces are there, plus some 

compensation code

2
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What Is Trace Scheduling?
Static Speculation

By moving instructions across branches to 
optimise probable path, we have done 
speculation

Dynamic (run time) speculation is one of 
the most significant ingredients of superscalar 
performance

Trace Scheduling is a form of static (compile 
time) speculation, and so are superblocks, 
hyperblocks,…

 Region-Based Scheduling
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Run Time vs. Compile Time
Speculation

At run time: it is the hw that does it
At compile time: the compiler schedules 

the speculated instruction before the 
branch  It is speculated with respect to 
the original code, but in the resulting code 
one cannot really see it as being 
speculated
It is what happens in trace scheduling

and superblock scheduling
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Compile Time Speculation 

 Register renaming to ensure that 
correction code source operands are 
preserved

 Because of exceptions, you need to 
either:
1. Avoid Errors: Speculate only instructions 

which cannot raise exceptions (but one 
wants to speculate loads!)

2. Resolve Errors: Add a special field in the 
opcode (Poison bit,…) that says when an 
instruction has been speculated (see IA-64)



© Ienne 2006-22AdvCompArch — Exploiting ILP Statically67

Architectural Needs for 
Run- vs. Compile-Time Speculation

How to nullify
instructions?

Where
to speculate?

How to handle
exceptions?

Predictors Nothing!
Profiling

Reorder buffer/ 
Commit unit

Nothing!
Register renaming

Reorder buffer/
Commit unit

Poison bits/
speculative opcodes

Most pressure is on the compiler
But not everything can be done by compilers! 

Compile-Time
Speculation

(VLIW)

Run-Time
Speculation
(superscalar)
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Compensation Code

Set of techniques to restore the correct 
flow of data and control because of global 
code motion
4 cases are possible:
No compensation (straight-line code)
Join compensation
Split compensation
Join/Split compensation
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No Compensation

Instr 1
Instr 2
Instr 3

Instr 2

Instr 3
Instr 1

X

Y

X

Y

Swap 2 and 1, in a basic block
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Join Compensation

Instr 1
Instr 2
Instr 3

Instr 2

Instr 3
Instr 1

Instr 2’

X

Y

Z
X

Y

Z

Swap 2 and 1, where 2 is a join
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Split Compensation

Instr 2
Instr 3

Instr 1
Instr 2

Instr 1’

Instr 1

Instr 3

X

Y
Z

X

Y Z

Swap 2 and 1, where 2 is a split
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Join/Split Compensation

Instr 2
Instr 3

Instr 1
Instr 2

Instr 1’

Instr 1

Instr 3

X

Y
W

X

Y W

Z
Instr 2’

Z

Swap 2 and 1, where 2 is a join and a split
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Region- (e.g., Trace-) Scheduling Is 
Iterative

Generate a region (e.g., pick the most 
probable trace)
Schedule it, and generate compensation 

code
Now the control-data-flow graph is 

changed: generate again a region and 
schedule it again, iteratively
Until no more compaction is possible
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Beyond Trace Scheduling: 
Superblock Scheduling

Extension of trace scheduling
Moving instructions across side entrances 

(joins) is more expensive than moving 
across side exits (splits)
Therefore  find hot traces and eliminate 

side entrances through tail duplication
A superblock is a trace without side 

entrances
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Superblock Formation

A

D

B C

95%

exit

A

D

B
C

exit

D

duplicated 
tail

superblock
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Fighting Dependencies

Parallel execution is limited by the need to find 
independent instructions

We need to deal with both data and control
dependencies

Data: 
a=b+c;
d=a+d;

Control: 
if (a==b)

d=c+d; exit
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Dependencies: 
RAW, WAR, and WAW

RAW              WAR WAW
WAR and WAW are “name” dependencies...

+

a    b  c    d 

+

x

—
e        f

g h

add e a b
sub f c d
mul g e f
add i g h

scheduling

register 
allocation

add r3 r1 r2
sub r1 r4 r5
mul r3 r3 r1
add r5 r3 r6
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Eliminating WAW and WAR at 
Compile Time

Rename: Eliminate dependencies by using 
different registers at compile time
Need more architecturally visible registers
In fact, Intel’s Itanium has 128 integer 

registers vs. 32 of typical 32-bit superscalars
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RAW Dependencies Are Hard to 
Eliminate

 75% of values in integer registers are predictable!

 If e is predictable, add and mul can occur in parallel 
(plus a comparison to verify the prediction) 
Dynamically exploitable, perhaps...

 At compile time it is hard to exploit (dynamic 
compilation, etc.)...

+

x
e         f

a b

+

a b

x

ê        f

e 
=?

ê        e
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Data Dependencies in Memory:
Is There a Dependency?

WAW and WAR not interesting
One does not want to move stores ahead of 

stores (WAW) or stores ahead of loads 
(WAR), because stores are not critical anyway

RAW is the only important one: moving a 
load above a store
Can we? If same address, then there is a 

dependency and hence not
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Example of Information Missing at 
Compile Time? But…

For example, consider:
sw $f3, 456($r1)
lw $f0, 123($r0)

Of course, we would like to start the load as 
early as possible (high-latency operation)

Is there a RAW dependence?
At run time:

 As soon as $r0 and $r1 are known, schedule freely unless
$r1+456 = $r0+123

 Forwarding may even hide the memory latency if RAW 
detected…

At compile time:
 ?!…
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Memory Disambiguation at 
Compile Time

At run time, we have more information on 
memory addresses (we have the 
addresses…)
But at compile time we have more 

time available: we can make much more 
complex analyses which depend on a 
wider knowledge of the code
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Memory Disambiguation at 
Compile Time

Is there an integer solution to the equation
2i + 1 = 2b ?

No (i = b - ½ )  No dependency possible
Time consuming but possible at compile time…
Also, other speculative techniques (assume no 

RAW and correct afterwards)  see later

for i = 1 to 20 {
j = 2 * b; 
a[2 * i + 1] = some_fn();
b = a[j];

}
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ILP Compilation Techniques

We have only scratched the surface with a few examples
 Many old and new techniques:

 Aliasing analysis
 Loop unrolling, peeling, fusion, and distribution
 Software pipelining, modulo scheduling
 Trace scheduling, superblock scheduling
With hardware support in the processor: predication, hyperblock 

scheduling,…
 Usually advantage not for free:

 Faster only on most frequent part of the code; penalty 
elsewhere  need a good static prediction of execution 
frequencies

 Difficult to apply some techniques in the general case
 Somehow larger code (e.g., worsens the performance of the I-

cache…)
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Conclusions on VLIW Compilers

Many difficult decisions
Which type of region is right? Traces, superblocks, 

hyperblocks, treegions?
Which regions to optimise? 

 Can one ask users to profile their code?
 Can one compile without profiling information?

To unroll or not to unroll? How many times?
To predicate or not to predicate?
When to allocate registers? (e.g., before, during, or 

after scheduling)

 Powerful compiler backends for VLIWs
are very hard to build



5
IA-64 and Itanium 2

(A Real VLIW Processor?!…)
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What is IA-64? What is Itanium?

 In December 1993, HP and Intel started discussing cooperation on high-end 
processors

 In June 1994, HP and Intel announced a partnership to develop a 
completely new 64-bit EPIC (Explicit Parallel Instruction Computing)
architecture

 VLIW-related ideas come from HP Labs, some pieces of compiler technology 
from the Impact Group at University of Illinois

 Intel started implementing the IA-64 architecture (Itanium)
 The first Itanium-based systems appeared mid-2001
 Itanium 2 processor (McKinley) was released in 2002 and discontinued in 

2007; other implementations followed until 2017 
 Itanium 2 was the largest area and largest transistor-count processor ever 

arrived on the market
 HP and Intel have poured significant investment (1 billion USD?) in the IA-

64 architecture; they sold about 55k units in 2007 vs. a market of 8.4M x86 
units

 Itanium architecture reached the official end of life in 2021
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EPIC 128-bit Instruction Bundles

Instruction 2 Instruction 1 Instruction 0 Template

Operation Register 1 Register 2 Register 3 Predicate

41 bits 41 bits 41 bits 5 bits

14 bits 7 bits 7 bits 7 bits 6 bits



© Ienne 2006-22AdvCompArch — Exploiting ILP Statically89

Bundles
Fetch and Execution Packets

Statically defined delivery 
through templates

1st

2nd

3rd

4th

{.mii
add r1 = r2, r3
sub r4 = r4, r5 ;;
shr r7 = r4, r12 ;;}
{.mmi
ld8 r2 = [r1];;
st8 [r1] = r23
tbit p1, p2 = r4, 5}
{.mbb
ld8 r45 = [r55]
(p3)br.call b1 = func1
(p4)br.cond Label1}
{.mfi
st4 [r45] = r6
fmac f1 = f2, f3
add r3 = r3, 8 ;;}

1st

2nd

3rd

4th

Cy
cle

s

Bu
nd

le
s

24 templates define different 
combinations of delivery and stop bits
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Predication (I)

 Frequent sequence for poorly predictable branches
1. Conditional branch (e.g., if r1 == r2)
2. Speculative instructions executed
3. Branch resolved (misprediction)
4. Speculative instructions squashed
5. Correct instructions executed

 How to reduce the cost due to the sequential 
execution 2-3-4? Is it possible to avoid the Branch 
altogether?

A B

test

continuation

if (test ) {
code A} 

else {
code B};
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Predication (II)

 Practically every instruction can be executed 
conditionally depending on the value of a 
Boolean register (predicate)

 Special instructions set a predicate as a result 
of comparisons and tests

 Example
cmp.eq p1, p2 = r1, r2;; // p1 = (r1==r2)

// p2 = !p1
(p1) sub r9 = r10, r11 // if (p1) sub…
(p2) add r5 = r6, r7 // if (!p1) add…

 Both control paths are executed 
simultaneously—no more branch/jumps
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Compound AND/OR for Predication

if ((a==0) || (b<=5) || (c!=d) || (f&0x2)) {
r3 = 8;

}

cmp.ne p1 = r0, r0 // p1 = false
add t = -5, b;; // t = b - 5

cmp.eq.or p1 = 0, a // p1 = p1 || (a==0)
cmp.ge.or p1 = 0, t // p1 = p1 || (t<=0)
cmp.ne.or p1 = c, d // p1 = p1 || (c!=d)
tbit.or p1 = 1, f, 1;; // p1 = p1 || (f&0x2)

(p1) mov r3 = 8 // if (p1) r3 = 8

Single
cycle
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Multiway Branches Through 
Predication

Often code contains sequences of branches (e.g., 
switch in C) which would be useful to execute in 
parallel

Multiway branches:
{.mii

cmp.eq p1 = r1, r2 // p1 = (r1==r2)
cmp.ne p2 = 4, r5 // p2 = (r5!=4)
cmp.lt p3 = r8, r9} // p3 = (r8<r9)

{.bbb
(p1)  br.cond label1 // if (p1) goto label1
(p2)  br.cond label2 // else if (p2) goto label2
(p3)  br.call b4 = label3} // else if (p3) label3()
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Balance Between Static and 
Dynamic Branch Prediction

Predication reduces number of branches
Hardware support in Itanium for prediction
Two direction prediction tables
Several target prediction schemes

Many types of branch hints from compiler
Use static only prediction (save table space)
Taken/Not Taken (static or default value)
Deallocate space in tables
Prefetch hints (no prefetch, few lines, many lines)
Branch Prepare instruction
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Control Speculation (I)

 Goal: move loads as early as possible, even speculatively before 
preceding branches (i.e., without being sure that they are really 
needed)

<some code>
(p1) br.cond somewhere
// ------ barrier
ld r1 = [r2]
<some code using r1>

ld r1 = [r2] // load could be speculated
// if old value r1 not needed

<some code> // <- neither here nor
(p1) br.cond somewhere   //    in “somewhere”
// ------ barrier
<some code using r1>     // but…

NO!
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Control Speculation (II)

 Speculative loads must not raise “speculative” (false) 
exceptions, thus deferred exceptions

 Important advantage because loads (slow operations) 
can now be started earlier

ld.s r1 = [r2] // speculative loads do not raise
// exceptions but mark the register
// with the additional NaT bit

<some code>
<some code using r1> // NaT is propagated in further

// calculations, which also
// defer exceptions

(p1) br.cond somewhere
// ------ barrier
<some more code using r1>
chk.s r1, fix_code_r1 // call exception handler if needed

// to fix-up execution



© Ienne 2006-22AdvCompArch — Exploiting ILP Statically97

Data Speculation (I)

 Similarly, potential RAW dependencies through memory are to be 
conservatively assumed as real dependencies  Loss of useful 
reordering possibilities

 Goal: move loads as early as possible, even speculatively before 
preceding stores (i.e., without being sure that the value is right)

<some code>
st [r3] = r4
// ------ barrier
ld r1 = [r2]
<some code using r1>

ld r1 = [r2] // load could be speculated…
<some code>
st [r3] = r4 // …but if r2==r3, r1 is WRONG!
// ------ barrier
<some code using r1>

NO!
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Data Speculation (II)

 Speculative Loads get executed but mark the destination register as 
“speculatively” loaded and track subsequent stores for a conflict

 Important advantage because loads (slow operations) can now be 
started earlier

ld.a r1 = [r2] // speculative loads are normal
// but mark always the register
// with the additional NaT bit

<some code>
<some code using r1> // NaT is propagated in further

// calculations

st [r3] = r4             // successive stores are checked
// to see if they rewrite locations
// which were object of speculative
// loads

// ------ barrier
<some more code using r1>
chk.a r1, fix_code_r1 // if violated RAW dependence, call

// special fix-up routine
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Application State — Registers
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Register Model (I)
Stacked Registers

 Registers #0-31 are static (normal registers)
 Each procedure sees a fresh register set from #31 

onwards (max 96)
 Special instruction

alloc <local-regs>, <out-regs>

 Declares max number of registers used in a procedure 
and max number of registers passed to a called 
procedure

alloc 8, 3
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Register Model (I)
Stacked Registers

The calling 
procedure has 
8 local and 3 

output 
registers

After a call, 
only the 3 

output 
registers are 
visible to the 
called routine

After an 
alloc, the 
old output 

registers are 
part of the 

new 10 local 
registers

After a return, 
everything 

goes back as 
before the call
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Register Model (I)
Stacked Registers

 Addresses the fact that parameter exchange through the 
stack before and after a function call (arguments and 
result) is very expensive if memory is a bottleneck (think 
also of registers $a0-$a3 and $v0-$v1 in MIPS)

 The basic idea of is very similar to Register Windows in 
the SPARC architecture but more flexible:
 SPARC has 128 registers R0-R127 but only 32 are visible at once
 r0-r7 = R0-R7 are Globals and always visible
 r8-r31 are a window (initially r31 = R127)

 r8-r15 = out, 
 r16-r23 = locals, and 
 r24-r31 = in

 At each CALL, the active window is moved down 16 registers so 
that r8-r15 (outs of the previous procedure) become r24-r31 (ins 
of the new procedure) and all other registers are fresh
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Register Model (I)
Stacked Registers

What happens if one alloc’s more registers than 
physically available?
 Number and type (# in/outs regs) of nested calls is dynamic!
 SPARC generates an exception
 In Itanium, a Register Stack Engine spills registers of outer 

procedures (oldest in the stack)
 Asynchronous and autonomous spilling of the non-visible 

registers in the background
 Can do spilling speculatively ahead of time
 Tries to use free Load/Store slots
 Reported effectiveness: removes 30% of Loads/Stores and 

consumes only 5% of the execution slots
 One step further in dynamic speculative execution! 

Weren’t VLIW “static” processors?!…
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Register Model (II) — Rotating 
Registers and Software Pipelining

Loop unrolling and Software Pipelining (see 
before) are ways to achieve more ILP in small 
loop bodies—but both have a number of 
tangible limitations (e.g., larger code, limited 
applicability)

Modulo Scheduling achieves the same 
purpose more effectively
Rotating registers and Predicates are the 

microarchitectural support needed to implement these 
techniques
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Reminder: SW Pipelining Example

Loop: LD $f0, ($r1)
ADDD $f4, $f0, $f2
SD ($r1), $f4

LD $f6, -8($r1)
ADDD $f8, $f6, $f2
SD -8($r1), $f8

LD $f10, -16($r1)
ADDD $f12, $f10, $f2
SD -16($r1), $f12

LD $f14, -24($r1)
ADDD $f16, $f14, $f2
SD -24($r1), $f16

LD $f18, -32($r1)
ADDD $f20, $f18, $f2
SD -32($r1), $f20

SUBI $r1, $r1, 40
BNEZ $r1, Loop

LOAD /Branch Unit STORE Unit ALU Floating-Point Unit

ld $f0, ($r1)

ld $f6, -8($r1)

ld $f0, -16($r1) addd $f4,$f0,$f2

ld $f6, -24($r1) addd $f8,$f6,$f2

ld $f0, -32($r1) addd $f12,$f0,$f2

ld $f6, -40($r1) sd 0($r1), $f4 addd $f4,$f10,$f2

ld $f10, -48($r1) sd -8($r1),$f8 addd $f8,$f14,$f2

ld $f14, -56($r1) sd -16($r1),$f12 subi $r1,$r1,24 addd $f12,$f6,$f2

bnez $r1, Loop

sd 0($r1), $f4 addd $f4,$f10,$f2

sd -8($r1), $f8 addd $f8,$f14,$f2

sd -16($r1),$f12

sd -24($r1), $f4

sd -32($r1), $f8
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Modulo Scheduling

Goals:
Get rid of the Prologue and Epilogue  use the 

loop Kernel instead
Minimize size of the Kernel
Automate/hide loop counting

Solution:
Architectural “renaming” across iterations 

Register Rotation
 Every new iteration r32r33, r33r34, r34r35, etc.

Special use of the predicates and loop 
instructions to mask out instructions in the prologue 
and epilogue
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Software Pipelining Reminder: 
Restructuring of the Loop Kernel

 Restructuring of 
the loop kernel 
from “vertical” 
(sequential) to 
“horizontal” 
(parallel)

 Parallelism 
among different 
iterations

LD ADD1 ADD4

FMUL

FMUL

FMAC BR

LD ADD1 ADD4

FMAC BR FMUL FMUL

Scheduled:
9 cycles

Scheduled:
3 cycles

3 phases
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Modulo Scheduling
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Register Model (II) — Rotating 
Registers and Loop-Type Branches

Special actions on:

 Loop Counter
 Count iterations 

(prologue and 
kernel)

 Epilogue Counter
 Count epilogue 

iterations
 Predicates

 mask out epilogue
 Rotate all registers 

(r32r33, r33r34, 
etc.) incl. predicates

98 7-bit adders and 42 MUXes to implement RFs stacking and rotations
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Example of Modulo Scheduling

 Add a constant to a vector

mov LC = 99 // LC = loop trip count – 1
mov EC = 4 // EC = epilogue stages + 1
mov pr.rot = 1 << 16 // p16 = 1, rest = 0

Loop: (p16) ld4 r32 = [r5], 4
(p18) add r35 = r34, r9
(p19) st4 [r6] = r36, 4
br.ctop Loop ;;

 Remarks:
 p16 to p19 in the loop: four phases in a single VLIW instruction
 Second phase empty
 ld4 has 2-cycle latency, hence r34 is the result of ld4
 add has 1-cycle latency, hence r36 is the result of add
 The immediate 4 in ld4 and st4 is post added to the memory pointer
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Miscellaneous Features

Very large Virtual Memory Model
Support for 64-bit addresses = 16 billion GBytes

82-bit Floating Point support
32-bit Single Precision IEEE-754
64-bit Double Precision IEEE-754
80-bit Double-extended Precision IEEE-754

 Two additional bits to increase efficiency
2 x 32-bit Single Precision IEEE-754 (SIMD)
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Itanium 2 Chip

 Second commercial 
implementation of IA-64

 1GHz in a .18um CMOS 6M 
process

 8-stage pipeline
 Issues up to 8 instructions per 

cycle on 19 (?) execution units
 16Kb+16Kb L1 Data and 

Instruction caches
 256Kb L2 unified cache
 3Mb L3 on-chip unified cache
 128-bit data bus, sustaining 

400Mbit/s/pin  6.4 Gbit/s
 Huge die:

 400mm2

 221M transistors
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Itanium 2
Chip
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Itanium 2 Processor Pipeline
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Current 
High-End 

Processors

Source: Microprocessor Report, © Cahners 2009

It works!... 
But if one compares 

Itanium 2 and 
1-core Xeon

(same technology), 
Itanium 2 has slightly 
better performance 

(+30-50%) 
at the price of 

~6 times larger area
and 

~10 times more 
transistors...
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But! Mutual Exclusion of Static and 
Dynamic Scheduling? No…

Itanium (IA-64) code is EPIC—that is, it is 
statically scheduled in 3-instruction 128-bit 
bundles

Merced (2001) and McKinley (2002) issue in 
order 2 bundles in parallel

The business importance of binary compatibility, 
will possibly make future implementation 
of IA-64 dynamically scheduled sometimes 
in the (not-too-near?) future
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Two Ways to ILP
Both Available in High-End Systems

Instructions

Cycles

VLIW

Pipelining

Standard

Dynamic Scheduling

Superscalar
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Conclusions on Real VLIWs

“Fallacy: There is a simple approach to 
multiple-issue processors that yields high 

performance without a significant investment 
in silicon area or design complexity”

Hennessy & Patterson, CA:AQA
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VLIW Can Be Good for Embedded 
Processors

Cost used to be the only concern; now 
performance/cost is at premium and still not 
performance alone as in PCs (Intel model); 
performance is often a constraint

Binary compatibility is less of an issue for 
embedded systems

Many embedded applications have an obvious 
parallelism

Manual optimizations are possible (tune compiler 
switches, annotate code with pragmas, etc.)
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Dual Cluster DSPs
TI DSP TMS320C64x
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Qualcomm Hexagon v5 DSP
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Meteor Lake AI Accelerator (NPU)
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Even inside 
Intel PC processors 

one can find 
AI accelerators 
that use VLIWs
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Google’s TensorCore is a VLIW
Groq’s LPU is a huge statically scheduled chip
etc.
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